

A new clan of CBM families based on bioinformatics of starch-binding domains from families CBM20 and CBM21

Martin Machovič¹, Birte Svensson², E. Ann MacGregor³ and Štefan Janeček¹

1 Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia

2 Biochemistry and Nutrition Group, BioCentrum-DTU, Technical University of Denmark, Kgs. Lyngby, Denmark

3 2 Nicklaus Green, Livingston, West Lothian, UK

Keywords

carbohydrate-binding module; evolutionary tree; glycoside hydrolase family; sequence alignment; starch-binding domain

Correspondence

S. Janeček, Institute of Molecular Biology, member of the Centre of Excellence for Molecular Medicine, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551 Bratislava 45, Slovakia Fax: +421 25930 7416 Tel: +421 25930 7420 E-mail: stefan.janecek@savba.sk

(Received 27 May 2005, revised 13 July 2005, accepted 30 August 2005)

doi:10.1111/j.1742-4658.2005.04942.x

Approximately 10% of amylolytic enzymes are able to bind and degrade raw starch. Usually a distinct domain, the starch-binding domain (SBD), is responsible for this property. These domains have been classified into families of carbohydrate-binding modules (CBM). At present, there are six SBD families: CBM20, CBM21, CBM25, CBM26, CBM34, and CBM41. This work is concentrated on CBM20 and CBM21. The CBM20 module was believed to be located almost exclusively at the C-terminal end of various amylases. The CBM21 module was known as the N-terminally positioned SBD of Rhizopus glucoamylase. Nowadays many nonamylolytic proteins have been recognized as possessing sequence segments that exhibit similarities with the experimentally observed CBM20 and CBM21. These facts have stimulated interest in carrying out a rigorous bioinformatics analysis of the two CBM families. The present analysis showed that the original idea of the CBM20 module being at the C-terminus and the CBM21 module at the N-terminus of a protein should be modified. Although the CBM20 functionally important tryptophans were found to be substituted in several cases, these aromatics and the regions around them belong to the best conserved parts of the CBM20 module. They were therefore used as templates for revealing the corresponding regions in the CBM21 family. Secondary structure prediction together with fold recognition indicated that the CBM21 module structure should be similar to that of CBM20. The evolutionary tree based on a common alignment of sequences of both modules showed that the CBM21 SBDs from α -amylases and glucoamylases are the closest relatives to the CBM20 counterparts, with the CBM20 modules from the glycoside hydrolase family GH13 amylopullulanases being possible candidates for the intermediate between the two CBM families.

Amylolytic enzymes are multidomain proteins. The three best known are α -amylase (EC 3.2.1.1), β -amylase (EC 3.2.1.2) and glucoamylase (EC 3.2.1.3) [1,2], which differ structurally and functionally from each other. In the sequence-based classification CAZy [3] of glycoside hydrolases (GH) they belong to the independent families GH13, GH14 and GH15, respectively, which have no mutual sequence similarities.

Family GH13 contains enzymes with about 30 different enzyme specificities [4] and forms, together with GH70 and GH77, the clan GH-H [5]. Unrelated α -amylases and amylolytic enzymes with sequence similarities to such α -amylases were grouped into family GH57 [6], while some amylolytic enzymes are also found in family GH31 [7]. The amylolytic enzymes belonging to the clan GH-H (families GH13, GH70,

Abbreviations

CBM, carbohydrate-binding module; CGTase, cyclodextrin glucanotransferase; GH, glycoside hydrolase family; SBD, starch-binding domain.

and GH77) are distinctly different from those found in families GH14, GH15, GH31, and GH57 in terms of amino acid sequences and three-dimensional structures. Moreover, these families employ different reaction mechanisms and catalytic machineries. The members of GH13 (a-amylases), GH14 (\beta-amylases) and a GH31 xylosidase adopt different $(\beta/\alpha)_8$ -barrel folds for the catalytic domain [8–10], while the catalytic domain in GH15 (glucoamylases) is a helical $(\alpha/\alpha)_6$ -barrel fold [11]. The structure of a GH57 4- α -glucanotransferase was recently determined as a $(\beta/\alpha)_7$ -barrel [12]. As far as the reaction mechanism is concerned, α -amylases and related enzymes (clan GH-H), as well as the enzymes from GH31 and GH57, employ a retaining mechanism, whereas β -amylases (GH14) and glucoamylases (GH15) are inverting enzymes [13,14].

Approximately 10% of all amylolytic enzymes possess a distinct domain enabling binding and degradation of raw starch. Certain amylolytic enzymes have this capacity without the presence of a specialized functional domain [15-17], but these are few. One example is the barley α -amylase that binds to raw starch at a surface binding site on the catalytic domain. This has been demonstrated by mutational analysis [15] and the site is seen as two critically oriented tryptophan residues in the crystal structure of the complex with acarbose [18]. A second surface site was recently discovered in the C-terminal domain, which seems unique to barley α -amylase 1 [19]. Mutational analysis of this site demonstrated a binding role [20]. Based on their sequences the starch-binding domains (SBD) have also been classified into families of carbohydrate-binding modules (CBM) [21]. At present, there are six SBD families in CAZy (recently reviewed in [22]): CBM20, CBM21, CBM25, CBM26, CBM34, and CBM41 [23-31].

The present work focuses on SBD families CBM20 and CBM21. The CBM20 module is \approx 90–130 residues long and has been studied most intensively. It is located in most cases at the C-terminus of amylolytic enzymes from families GH13, GH14, and GH15 [23,24]. The three-dimensional structure of the isolated SBD alone has been determined by NMR as well as by X-ray crystallography of enzymes that contain this SBD [32-38]. The CBM20 module consists of seven β-strand segments forming an open-sided distorted β-barrel. Several aromatics, especially the wellconserved Trp and Tyr residues, were proposed to be essential for the function of the SBD [23], and these were confirmed to participate in two raw starchbinding sites of the module [39-43]. It has been demonstrated that, if fused to another protein, this SBD independently retains its function even when the target protein is not an amylase [44–48]. On the other hand, there is a lack of information on structure–function relationships of the CBM21 module. The length in this case varies in the range $\approx 90-140$. The CBM21 module is well known as the N-terminally positioned SBD of *Rhizopus oryzae* glucoamylase [49]. Recently several nonamylolytic proteins (especially as deduced from sequenced genomes) were recognized to possess amino acid sequence stretches that exhibit unambiguous similarities with the experimentally observed SBDs of CBM20 and CBM21, e.g. protein phosphatases (EC 3.1.3.16).[50], laforin [51], and genethonin-1 [52]. These observations strongly motivated interest in carrying out a rigorous bioinformatics analysis of the two CBM families.

A structural relationship between the C-terminally positioned (CBM20) and the N-terminally positioned (CBM21) SBDs was suggested more than 15 years ago, based on sequence alignments [23]. We therefore, in the first step, analyzed the sequences of both families separately, taking into account the above-mentioned lack of structure–function information concerning CBM21. This was followed by attempts to identify the CBM20 sequence of structural features in the sequences of CBM21, aimed at revealing amino acid residues that correspond with each other in the two families. Finally, a sequence alignment was made that served for calculation of the common CBM20-CBM21 evolutionary tree. This provides a basis for the joining of the two CBMs into a common clan.

Results and Discussion

Location of SBD modules in CBM20 and CBM21

With regard to the location of the SBD in the polypeptide chain, analysis of recent sequences showed that the original idea [23,24] of the CBM20 module being at the C-terminus and the CBM21 module at the N-terminus of a protein, should be modified (Fig. 1). Thus, the division into C-terminal and N-terminal SBDs seems to hold for the SBDs possessing the established function of raw starch-binding, while the other proteins (nonamylases), exhibiting only the sequence motif features of CBM20 or CBM21, do not necessarily obey this rule. It is worth mentioning that the real starch-binding function could be ascribed only to α -amylase (GH13), β -amylase (GH14), glucoamylase (GH15), maltooligosaccharide-producing amylases (GH13), cyclodextrin glucanotransferase [CGTase, (EC 2.4.1.19)] (GH13), and acarviose transferase (GH13) that altogether constitute less than 30% of the sequences, i.e., more than 60% in the family CBM20 and only about 10% in CBM21.

Fig. 1. Position of the CBM20 and CBM21 modules in the amino acid sequences. For the proteins without (^a) or (^b), these are the total lengths of the proteins and the black lines are drawn to scale to represent protein lengths. For the proteins with (^a) and (^b), 1000 residues from the N-terminus are deleted and shown, respectively. For example, for apuBacst (2018^a), the protein is 2018 residues long, but only the last 1018 are shown; and for agwdArath (1196^b), the protein is 1196 residues long, but only the first 1000 from the N-terminal end are shown. For protein identification, see Table 1.

There are several other glycoside hydrolases containing the CBM20 module, e.g. amylopullulanase (GH13), $6-\alpha$ -glucosyltransferase (GH31), and $4-\alpha$ -glucanotransferase (GH77), for which a real starchbinding function has not been demonstrated up to now. These CBM20 modules are positioned inside the polypeptide chain (amylopullulanases) or at the N-terminal end (6- α -glucosyltransferase and 4- α -glucanotransferases). Interestingly, α -glucan water dikinase, a starch phosphorylating enzyme from *Arabidopsis thaliana*, contains a CBM20 module near the N-terminal end of the protein. The N-terminal location is also seen in the case of the majority of unknown proteins of eukaryotic origin with a recognized CBM20 module (Fig. 1). At present it is not possible to decide the real function of CBM20 in these proteins, with a single remarkable exception, laforin [51], the protein product of the Lafora type of epilepsy gene, which was proven experimentally to bind starch with its CBM20 module [53,54].

The situation in CBM21 is more complicated, because microbial amylolytic enzymes represent only 10% of the sequences in this family. A substantial number of the remaining CBM21 members are eukaryotic protein phosphatases and/or their regulatory subunits. Interestingly, the regulatory subunit, called the glycogen-targeting G subunit, was shown to direct the protein phosphatase to glycogen [55]. Because these proteins were shown to also contain a binding site for glycogen phosphorylase, they, albeit indirectly, also play a role in glycogen metabolism [56]. At present the majority of the CBM21 family modules belong to unknown proteins of various origins. As far as the location of the SBD is concerned, this module is clearly neither positioned N-terminally (except for the amylases) nor exclusively at or near the C-terminal end of the protein (Fig. 1). Thus CBM20 and CBM21 can no longer be considered as exclusively C- and N-terminally positioned, respectively. It should be noted, however, that up until now CBM21 has been found only in eukaryotes (Table 1).

Sequence analysis

Detailed analysis of amino acid sequences of the SBDs revealed that CBM20 has no invariant residues, whereas CBM21 has a single invariant Lys34 (*Rhizopus oryzae* glucoamylase numbering) (Fig. 2; the complete alignment is not shown).

Originally 11 consensus residues were shown for a small number of CBM20 sequences [23]. Their structural arrangements in the motifs from the representatives of bacteria and fungi are illustrated in Fig. 3. As the number of sequences increased, a few (about 2%) substitutions were found at these positions [24]. At present even the functionally important tryptophans, Trp643, Trp689 of binding site 1 (Fig. 3; *Bacillus circulans* strain 251 CGTase numbering, i.e., the Trp616 and Trp662 after removing the 27-residue long signal peptide), are not absolutely conserved. While the

former tryptophan is missing in only one case (CBM20 motif of the CGTase from Streptococcus pyogenes), the latter varies more often (Fig. 2). Interestingly Trp689 is substituted in all three putative CGTases from cyanobacteria (Gloeobacter violaceous, Nostoc sp. PCC7120 and PCC9229), all five amylopullulanases, one glucoamylase (Hormoconis resinae), two $4-\alpha$ -glucanotransferases (Arabidopsis thaliana and rice), and two unknown proteins (upAspni3, upMaggr2) (Fig. 2). However, no sequence lacks both of these signature tryptophans. The region around Trp643 (residues LGxW) is the best conserved part of the entire CBM20 motif. As far as the remaining consensus residues are concerned, these are best conserved in amylolytic enzymes, with the exception of amylopullulanases, which, however, do contain the equivalent of Lys678 (Fig. 2) associated with binding site 1 (Fig. 3; B. circulans CGTase numbering).

Besides the consensus residues, the present analysis identified the position equivalent to Phe618 (*B. circulans* CGTase numbering, i.e., the Phe591 after removing the 27-residue long signal peptide) as highly conserved (87.5%). This phenylalanine is present not only in the amylolytic enzymes, but also in the animal SBDs as found in laforin and genethonin-1 (Fig. 2). The lack of this residue in the three putative CGTases of cyanobacteria and the CGTase from *S. pyogenes* is remarkable. These sequences are unusual in other ways, however, in that the cyanobacterial CGTases lack the equivalent of Trp689 (Trp662 without the signal peptide), while the *S. pyogenes* CGTase lacks the essential tryptophan from the region LGxW.

At present it is not possible to say more about the real function of SBDs from the cyanobacterial CGTases included in the present analysis. The CGTases from *Gloeobacter violaceus* and *Nostoc* sp. PCC7120 were identified in the complete genome sequences [57,58], while that from *Nostoc* sp. PCC9229 was cloned and expressed as a putative CGTase [59]. It seems that not all cyanobacteria must contain the putative CGTase gene, e.g. it is missing from the genome of *Synechocystis* sp. 6803 [60].

Despite numerous substitutions observed in the consensus positions (Fig. 2), the regions around these residues remain the best conserved segments of a SBD of CBM20 type. They were thus used as markers to reveal possible correspondence with CBM21 as well as to adjust CBM20 and CBM21 sequences to each other. Although the probable relatedness of the two SBD families was indicated more than 15 years ago [23], the lack of the three-dimensional structure of CBM21 makes it less straightforward to deduce whether or not the two CBM modules are related. It is remarkable, **Table 1.** The enzymes and proteins containing the CBM20 and CBM21 modules. The abbreviation 'prot. phosp. reg. sub.' means the regulatory subunit of protein phosphatase. All sequences were retrieved from GenBank except for the cgtBacma2 (UniProt: P31835).

Abbreviation	Specificity	EC number	Source	GenBank	Length	Glycoside hydrolase family
CBM20						
(Bright green of	Fig 2)					
amvAspka	α-amylase	3211	Aspergillus kawachi	BAA22993	640	13
amvAspnd	α-amylase	3211	Aspergillus nidulans	AAF17100	623	13
amyBacsp	α-amylase	3211	Bacillus sp. TS-23	AAA63900	613	13
amyCrysp	α-amylase	3211	Cryptococcus sp. S-2	BAA12010	631	13
amyStrar	α-amylase	3211	Streptomyces griseus	CAA40798	566	13
amyStrlm	α-amylase	3211	Streptomyces limosus	AAA88554	566	13
amyStrli1	α-amylase	3211	Streptomyces lividans	CAA73926	574	13
amyStrli2	α-amylase	3.2.1.1	Streptomyces lividans	CAB06622	573	13
amyStrvi	α-amvlase	3.2.1.1	Streptomyces violaceus	AAB36561	569	13
amyThncu	α-amylase	3211	Thermomonospora curvata	CAA41881	605	13
amy Aspaw	α-amylase	n d	Aspergillus awamori	BAD06003	634	13
CBM20	a arryladd	11.0.	, loporgillae avvallion	5,500000	001	10
(Purple of Fig 2)						
atrActsn	acarviose	24119	Actinonlanes sp. 50/110	AAE37556	724	13
unitotop	transferase	2.1.1.10		, , , , , , , , , , , , , , , , , , , ,	721	10
catBacaa	CGTase	2 4 1 19	Bacillus agaradhaerens	ΔΔΡ31242	679	13
catBachr	CGTase	2.4.1.10	Bacillus brevis	ΔΔR65420	692	13
cgtBacci2	CGTase	2.4.1.10	Bacillus circulans 251	CAA55023	713	13
catBacci8	CGTase	2.4.1.19	Bacillus circulans 8	CAA33023	718	13
cgtBacciA	CGTase	2.4.1.10	Bacillus circulans 0	AAG31622	713	13
ogtBacciA		2.4.1.13	Pacillus circularis ATT Pacillus clarkii	PAR01022	713	10
ogtBacci		2.4.1.13	Pacillus lichopiformia	CAA22762	702	10
cytBacii		2.4.1.19		CAA33703	710	10
cylbacma1	CGTase	2.4.1.19		D21025	714	10
Cylbacmaz	CGTase	2.4.1.19		P31030	713	13
cgtBacon	CGTase	2.4.1.19	Bacilius ondensis	BAA 14289	704	13
cgtBacspu	CGTase	2.4.1.19	Bacillus sp. 1011	AAAZZ308	713	13
cgtBacsp I	CGTase	2.4.1.19	Bacillus sp. 1-1	ALBSXI	703	13
cgtBacsp7	CGTase	2.4.1.19	Bacillus sp. 17-1	AAA22310	713	13
cgtBacsp3	CGTase	2.4.1.19	Bacillus sp. 38-2	AAA22309	712	13
cgtBacsp63	CGTase	2.4.1.19	Bacillus sp. 6.3.3	CAA46901	718	13
cgtBacsp6	CGTase	2.4.1.19	Bacillus sp. 633	BAA31539	704	13
cgtBacspB	CGIase	2.4.1.19	Bacillus sp. B1018	AAA22239	/13	13
cgtBacspD	CGlase	2.4.1.19	Bacillus sp. DSM 5850	CAA01436	699	13
cgtBacspE	CGTase	2.4.1.19	Bacillus sp. E-1	Z34466	859	13
cgtBacspK	CGTase	2.4.1.19	Bacillus sp. KC201	BAA02380	703	13
cgtBacst	CGTase	2.4.1.19	Bacillus stearothermophilus	CAA41770	711	13
cgtGeost	CGTase	2.4.1.19	Geobacillus stearothermophilus	AAD00555	711	13
cgtKlepn	CGTase	2.4.1.19	Klebsiella pneumonie	AAA25059	655	13
cgtThmth	CGTase	2.4.1.19	Thermoanaerobacter thermosulfurogenes	AAB00845	710	13
cgtThcsp	CGTase	2.4.1.19	Thermococcus sp. B1001	BAA88217	739	13
cgt_Bacsp5	CGTase	n.d.	<i>Bacillus</i> sp. I-5	AAR32682	712	13
cgt_Glovi	CGTase	n.d.	Gloeobacter violaceus	BAC88314	642	13
cgt_Nossp7	CGTase	n.d.	Nostoc sp. PCC 7120	BAB77693	642	13
cgt_Nossp9	CGTase	n.d.	Nostoc sp. PCC 9229	AAM16154	642	13
cgt_Stcpy (Grev of Fig. 2)	CGTase	n.d.	Streptococcus pyogenes	AAK34149	711	13
m5hPsesnK	maltopentaohydrolase	321-	Pseudomonas sp. KO-8940	BAA01600	614	13
m4hPsesa	maltotetrachydrolase	3 2 1 60	Pseudomonas saccharonhila	CAA34708	551	13
m4hPeest	maltotetrachydrolase	3 2 1 60	Pseudomonas stutzeri	ΔΔΔ25707	548	13
maaBacst	maltogenic a-amylase	3.2.1.133	Bacillus stearothermophilus	AAA22233	719	13

M. Machovič et al.

Table 1. (Continued).

Abbreviation	Specificity	EC number	Source	GenBank	Length	Glycoside hydrolase family
(Dark vellow of	Fig. 2)					
apuBacst	amylopullulanase	32141	Bacillus stearothermophilus	AAG44799	2018	13
anuBacsnX	amylopullulanase	3 2 1 41	Bacillus sp. XAI 601	RAA05832	2032	13
apuTheth	amylopullulanase	3.2.1.41	Thermosulfurogenes	AAB00841	1861	13
anuTheet	amylonullulanase	32141	Thermoanaerobacter ethanolicus	۵۵۵۶۶۶۵۱	1481	13
apuThetc	amylopullulanase	3.2.1.41	Thermoanaerobacter	AAA23201 AAA23205	1475	13
(Red of Fig.2)			tnermonyarosulturicus			
bmvBacce	β-amvlase	3.2.1.2	Bacillus cereus	BAA34650	546	14
bmvBacme	β-amvlase	3.2.1.2	Bacillus megaterium	CAB61483	545	14
bmvCloth	β-amvlase	3.2.1.2	Clostridium thermosulfurogenes	AAA23204	515	14
(Blue of Fig. 2)	, , , , , , , , , , , , , , , , , , , ,					
amvAspaw	glucoamylase	3.2.1.3	Aspergillus awamori	AAB02927	639	15
amvAspfi	glucoamylase	3.2.1.3	Asperaillus ficuum	AAT58037	640	15
gmvAspka	glucoamylase	3213	Aspergillus kawachi	BAA00331	639	15
amvAspni	glucoamylase	3213	Asperaillus niger	AAB59296	640	15
amyAspor	glucoamylase	3213	Aspergillus orvzae	AAB20818	612	15
amv∆snsh	ducoamylase	3213	Asperaillus shirousami	RΔΔ01254	639	15
amvAspte	ducoamylase	3213	Aspergillus tereus	115383	762	15
amyCorro	ducoamylase	3213	Corticium rolfsii	BAA08436	579	15
amyHorre	ducoamylase	3213	Hormoconis resinae	CAA47945	616	15
amyHumar	ducoamylase	3213	Humicola grisea	0///4/040 00//4/	620	15
gmyl opod	glucoamylaso	3213		AAA333300 AAE75523	571	15
gmyNouer	glucoamylaso	3213	Nourospora crassa	AAI 75525	626	15
gmyTalom	glucoamylase	3.2.1.3		AAE13030	020 501	15
	glucoamylase	5.2.1.5 nd	Asparaillus awamari	PADOGOOA	620	15
gmy_Aspaw	glucoamylase	n.u.		A D04400	620	15
gmy_Asphin	glucoamylase	n.u.	Asperginus niger 121	CAE75704	405	15
(Green of Fig. 2)	n.u.	Neurospora crassa	CAE75704	405	15
6agtArtgl	6-α-glucosyltransferase	n.d.	Arthrobacter globiformis	BAD34980	965	31
(Yellow of Fig. 2	2)					
4agtBacfr	4-α-glucanotransferase	2.4.1.25	Bacteroides fragilis	BAD50570	900	77
4agtSoltu	4-α-glucanotransferase	2.4.1.25	Solanum tuberosum	AAR99599	948	77
4agt_Arath	4-α-glucanotransferase	n.d.	Arabidopsis thaliana	AAL91204	955	77
4agt_Orysa	4-α-glucanotransferase	n.d.	Oryza sativa	BAC22431	922	77
(Dark red of Fig	. 2)					
agwdArath	α-glucan water dikinase	2.7.9.4	Arabidopsis thaliana	AY747068	1196	-
genHomsa	genethonin-1	_	Homo sapiens	AAH22301	358	-
lafGalga	laforin	-	Gallus gallus	CAG31547	319	-
lafHomsa	laforin	-	Homo sapiens	AAG18377	331	_
depChlpr	degreenig enhanced protein	_	Chlorella protothecoides	CAB42581	211	-
(Turquoise of Fi	g. 2)					
upAspnd1	unknown protein	-	Aspergillus nidulans	EAA62623	385	-
upAspnd2	unknown protein	-	Aspergillus nidulans	EAA61773	661	-
upAspnd3	unknown protein	-	Aspergillus nidulans	EAA64118	1264	-
upMaggr1	unknown protein	-	Magnaporthe grisea	XP_368148	649	-
upMaggr2	unknown protein	-	Magnaporthe grisea	XP_365988	353	-
upMaggr3 (Black of Fig. 2)	unknown protein	-	Magnaporthe grisea	XP_365989	600	-
upArath	unknown protein	_	Arabidopsis thaliana	AAL15255	306	_
upBacag	unknown protein	_	Bacillus agaradhaerens	CAD38091	714	_
upBurps	unknown protein	_	Burkholderia pseudomallei	CAH37589	871	_
upCloac	unknown protein	_	Clostridium acetobutylicum	AAK80197	170	_

Abbreviation	Specificity	EC number	Source	GenBank	Length	Glycoside hydrolase family
upCrypa	unknown protein	_	Cryptosporidium paryum	FAK89630	150	_
upDicdi	unknown protein	_	Dictvostelium discoideum	AA051512	146	_
upDrome	unknown protein	_	Drosophila melanogaster	AAF46674	679	_
upGlovi		_	Gloeobacter violaceus	BAC91285	845	_
upHomea		_	Homo sanions	AAH27588	672	_
upChrvi			Chromobactorium violacoum	AAN27300 AAO61151	874	
		_		PAC21004	675	-
		-	Mus musculus (head)	BAC31004	220	-
upiviusinuL		_		DAC34244	100	-
		_		DAC27003	120	—
upOrysal	unknown protein	_	Oryza sativa	BAB63700	379	_
upOrysaz		_	Diyza saliva	AAU10756	373	—
upRatho	unknown protein	_	Kattus horvegicus	AAU84024	672	_
upxenia	unknown protein	_	Xenopus laevis	AAH73202	313	-
CBIMI21						
(Bright green of Fig	g. 2)					
amyLipko	α-amylase	3.2.1.1	Lipomyces kononenkoae	AAC49622	624	13
amyLipst (Blue of Fig. 2)	α-amylase	3.2.1.1	Lipomyces starkeyi	AAN75021	647	13
gmyArxad	glucoamylase	3.2.1.3	Arxula adeninivorans	CAA86997	624	15
gmyRhior	glucoamylase	3.2.1.3	Rhizopus oryzae	AAQ18643	604	15
gmyMucci (Pink of Fig. 2)	glucoamylase	3.2.1.3	Mucor circinelloides	AAN85206	609	15
nfHomsa	protein phosphatase	3 1 3 16	Homo sapiens	AAB94596	1122	_
nfBatno	protein phosphatase	3 1 3 16	Rattus porvegicus	CAA77083	284	_
nf MusmuA	protein phosphatase	_	Mus musculus (adipocyte cells)	AAR49689	294	_
of MusmuH	protein phosphatase	_	Mus musculus (heart)	AAK31072	578	_
of Musmul	protein phosphatase	_	Mus musculus (lungh)	AAH60261	284	_
pf_MasmaL	protein phosphatase	_	Gallus gallus	AAC60216	288	_
pfrsHomsaB	prot. phosp. reg. sub.		Homo saniens (brain)	AAC00210 AAH47502	200	_
pfrsOnyou	prot. phosp. reg. sub.	_		AAN47302 AAA31462	1109	_
pfrsOrycu pfrsSaaaa1	prot. phosp. reg. sub.	_	Sacharomycon paravisian	CAA96006	F20	-
pfrsSacce1	prot. phosp. reg. sub.	_	Saccharomyces cerevisiae	CAA00300	703	-
pfrs Close	prot. phosp. reg. sub.		Clostridium sostobutulisum	AAK76974	247	
pris_Cloac	prot. phosp. reg. sub.	_		AAK70074	247	-
pris_nonsas	prot. phosp. reg. sub.	_		AAH43366	200	-
pris_nonsaivi	prot. phosp. reg. sub.	_		AAR12025	517	-
pris_Saccer	prot. phosp. reg. sub.	-	Saccharomyces cerevisiae	AAB64590	548	_
pris_Saccez	prot. phosp. reg. sub.	_	Saccharomyces cerevisiae	AAB67365	648	_
(Black of Fig. 2)	prot. phosp. reg. sub.	-	Xenopus tropicaiis	AAH74693	223	_
upAspni	unknown protein	-	Aspergillus nidulans	EAA64131	795	-
upCaeel1	unknown protein	-	Caenorhabditis elegans	AAF39789	318	-
upCaeel2	unknown protein	-	Caenorhabditis elegans	AAK82903	346	-
upCangl1	unknown protein	-	Candida glabrata	CAG59109	682	-
upCangl2	unknown protein	-	Candida glabrata	CAG59903	915	-
upCangl3	unknown protein	_	Candida glabrata	CAG60779	543	-
upCangl4	unknown protein	_	Candida glabrata	CAG61779	827	-
upDanre1	unknown protein	_	Danio rerio	AAH44421	293	-
upDanre2	unknown protein	_	Danio rerio	AAH67184	253	-
upDanre3	unknown protein	_	Danio rerio	AAH75881	311	-
upDanreW	unknown protein	-	Danio rerio wild-type	AAH60926	317	-
upDebha1	unknown protein	-	Debaryomyces hansenii	CAG87286	628	-
upDebha2	unknown protein	_	Debaryomyces hansenii	CAG89742	509	-
upDrome1	unknown protein	_	Drosophila melanogaster	AAF49732	330	_
upDrome2	unknown protein	_	Drosophila melanogaster	AAF49172	172	-

Abbreviation	Specificity	EC number	Source	GenBank	Length	Glycoside hydrolase family
upErego1	unknown protein	_	Eremothecium gossypii	AAS51837	354	_
upErego2	unknown protein	-	Eremothecium gossypii	AAS54765	679	-
upHomsaR	unknown protein	-	Homo sapiens (retina)	CAD97641	317	-
upHomsaS	unknown protein	-	<i>Homo sapiens</i> (spleen)	BAB15779	349	-
upKlula1	unknown protein	-	Kluyveromyces lactis	CAH00570	748	-
upKlula2	unknown protein	-	Kluyveromyces lactis	CAG99013	498	-
upMaggr	unknown protein	-	Magnaporthe grisea	XP_367749	924	-
upMusmu	unknown protein	-	Mus musculus	AAF66954	735	-
upNeucr	unknown protein	-	Neurospora crassa	XP_330896	864	-
upXenla1	unknown protein	-	Xenopus laevis	AAH72880	271	-
upXenla2	unknown protein	-	Xenopus laevis	AAH68825	223	-
upXenla3	unknown protein	-	Xenopus laevis	AAH77483	299	-
upXenla4	unknown protein	-	Xenopus laevis	AAH73501	313	-
upYarli	unknown protein	-	Yarrowia lipolytica	CAG82944	1129	-

Table 1. (Continued).

however, that the fold recognition method 3D-PSSM [61] identified the CBM20 module of Bacillus stearothermohilus maltogenic α -amylase [62] as a top hit for CBM21 SBDs from both R. oryzae glucoamylase [49] and Lipomyces kononenkoae a-amylase [63]. In addition, secondary structure prediction for these two SBDs from CBM21 indicates that β -strands would be expected to occur in positions equivalent to known β -strand locations in CBM20 domains, when the amino acid sequences are aligned as in Fig. 2. These findings, together with the secondary structure prediction of the glycogen-targeting subunit of protein phosphatases [50], strongly support the idea that the three-dimensional structures of CBM20 and 21 modules are similar and suggest that the two CBM families can be grouped into a CBM clan.

Compared to CBM20, analysis of CBM21 sequences received much less attention [24,50,64]. Based on the present alignment, it is clear that some of the CBM20 consensus residues, Gly628, Trp643, Trp689 and Asn694 (*B. circulans* CGTase numbering including the signal peptide) have possible equivalents in the CBM21motif (Fig. 2). Concerning Trp663 (i.e., Trp636

without the signal peptide), which possesses a structural role in CBM20 instead of a binding role [65], this residue is evidently present in all amylolytic CBM21 SBDs (from recognized α -amylases and glucoamylases). The remaining CBM21 sequences contain a phenylalanine in that position (Fig. 2), with the exception of the regulatory subunit of protein phosphatase from *Clostridium acetobutylicum* (that moreover contains the lysine equivalent to the CBM20 consensual Lys678, i.e., Lys651 without the signal peptide). Interestingly, the two tryptophans (corresponding with the two functional CBM20 Trp residues) are better conserved in the nonamylolytic CBM21 motifs than in CBM21 SBDs from α -amylases and glucoamylases (Fig. 2).

Evolutionary analysis

The evolutionary relationships between the numerous CBM20 and CBM21 sequences (Table 1) are apparent in Fig. 4. The two families clearly retain some independence, thus CBM20 members do not occur in the CBM21 part of the tree and vice versa. In the past, by far the most attention was paid to the evolution of

Fig. 2. Alignment of SBD sequences from CBM20 and CBM21 families. For an explanation of the colour code for enzymes and the abbreviations used for the sources, see Table 1. Only the segments around the important residues (known as consensus [23]; blue and yellow highlighting) plus the one at the beginning of the SBD modules are shown. In the CBM20 module, the tryptophans and tyrosines involved in binding sites 1 and 2, respectively, are signified by yellow [41,42]. The conserved phenylalanine in CBM20 and invariant lysine in CBM21 are shown in black inversion. The aspartate and two phenylalanines (DxFxF) in CBM21, characteristic of nonamylolytic enzymes, are highlighted in gray. The numbers preceding the first segment and succeeding the last segment represent the position in the amino acid sequence. Residues deleted between the two adjacent segments are indicated by superscript numbers. The sequences are numbered from the N-terminus including the signal peptides (e.g. for CGTase from *Bacillus circulans* strain 251, there is a known 27-residue long signal peptide). The two extra lines under each CBM family, 90% cons and 80% cons, are associated with 90% and 80% consensus, respectively. Special symbols are used for aromatic (Δ), acidic (Δ), hydrophobic (\bullet), and hydrophilic (\bigcirc) residues.

CBM-20	
--------	--

	5.4.0											~				
amyAspka	540	PITEEEI	- Z	TTYGE	1 VIL:	s <mark>g</mark> stsQ-	LGE	WHT	8	DD Y TSSNPEW	SV	9	FEAREIK	8	WESDPN	619
amyAspnd	523	TVVFQEF	2	TA <mark>Y</mark> GE	1 VFL	A <mark>g</mark> sisq-	LGN	W DT	8	AQYTATDPLW	TV	9	FEFKFLK	8	WESNPN	602
amyBacsp	517	NVTETVN	13	TTSGQ	1 VYV	/ANIPE-	LGN	WNT	9	S <mark>Y</mark> PTW	KA	9	IEF <mark>K</mark> FIK	8	WESTSN	593
amyCrysp	530	TVVEDVY	. 2	TQ <mark>Y</mark> GQ	1 VVI	A <mark>g</mark> nipq-	LGN	WSP	9	-Q <mark>Y</mark> TASSPKW	TG .	10	FQW <mark>K</mark> PIV	- 7	WYPGNN	609
amyStrgr	472	SASEHVN	12	TAWGE	1 IYV	[<mark>g</mark> dqaa-	LGN	W DP	- 7	PAA <mark>Y</mark> PVW	KL	9	FQY <mark>K</mark> YLR	8	WESGAN	547
amyStrlm	472	SASEHVN	12	TAWGE	1 IYV	I <mark>g</mark> dqaa-	LGN	W DP	7	PAA <mark>Y</mark> PVW	KL	9	FQY <mark>K</mark> YLR	8	WESGAN	547
amyStrli1	480	RRVPSA	73	T SW <mark>G</mark> Q	1 IYV	r <mark>g</mark> nrpe-	LG N	WNP	7	PAA <mark>Y</mark> PVW	KR	9	FEY <mark>K</mark> YLR	8	WESGAN	556
amvStrli2	480	GVSBAVI	2	TSWGO	1 IYV	r <mark>g</mark> nrpg-	LGH	W DP	7	PAA <mark>Y</mark> PVW	KR	9	FEYKSLR	8	WESGAN	555
amvStrvi	475	GASENVI	2	TVVGO	1 IYV	GNRAE-	LGN	WAP	7	PATYPVW	КL	9	FEYKYIR	8	WESGAN	550
amyThncu	507	TARPHAT	2	TWYGO	1 VAV	GSTPE-	LGS	WOP	8	DSGTYPVW	SG	9	FEYKYVK	6	WSGSRA	582
amy Aspaw	536	PITLEEI	. 2	TTYCE	1 TYL		LCE	wow.	8	DDYTSSNPFW	VV	g	FEYKETK	8	WESDPN	615
atracten	621	DVODTV(TAPCE	1 TVT	CDVAE-	LCH	MOT.	8	TIDVDNESDC	VT.	a	VEEKEVK	g	WEGGAN	705
actAccop	502	TVDBTT	2 7	TRICE			TCM		0		VU VV	0	TERRETE	0	WOSCAN	662
cytBacay	502	CUDEAUA	1 2	TNECT	1 UVIN		TCM		2		1 I VV	2	LEVENTR	0	WOSCH N	675
cycbacbi cetDacai 2	595 C1E	CUDUUU	1 2	TNOGI	1 17771		TON		0		11	2	TERMET	7	WDCCC	C04
CGUBACCIZ	615	SVREVVP	1 3	TALGQ	1 TVIL		TGN	NDP	10		II	9	LEFKFLK		WEGGSN	094
CGTBACC18	620	TVREVVP	13	TTLGQ	1 LIL:	IGNVAE-	LGN	WST.	10	-QVIHQ Y PTW	Ϋ́Υ	9	LEFRFFK		WESGSN	700
CGTBACCIA	615	TVREVIE	13	TALGQ	I VEL	IGNVSE-	LGN	MDP	9	-QVVYQ Y PTW	ΥΥ	9	TEFRELK	/	WEGGAN	694
cgtBaccl	603	SVREVVI) 3	TNYGE	1 VIL	/GNVPE-	-LGN	MNP	9	-QVVYS Y PTW	ΥY	9	TEERKEIT	8	WESGGN	683
cgtBacli	620	SVREVIN	13	TALGE	1 IYL	r <mark>G</mark> NVSE-	-LGN	WTT	10	-QVIHAYPTW	ΥY	9	LEFKFFK	- 7	WEGGSN	700
cgtBacmal	616	TVRELVI	13	TN <mark>Y</mark> GT	1 VYL	/GNAAE-	LGS	W DP	9	-QVIAK Y PSW	ΥY	9	LDFKFIK	1	WEGGGN	695
cgtBacma2	615	TVREKVI	13	TALGQ	1 VYL	I <mark>G</mark> NVAE –	LGN	W TA	9	-QVEAS <mark>Y</mark> PTW	ΥF	9	LQF <mark>K</mark> FIK	7	WEGGNN	694
cgtBacoh	606	SIRFAVN	13	TSLGT	1 LYM	/ <mark>G</mark> NVNE-	LGN	W DP	9	-QVMYQ Y PTW	ΥY	9	LEY <mark>K</mark> FIK	8	WESGNN	686
cgtBacsp0	615	TVREVIN	13	TAL <mark>G</mark> Q	1 VFL	r <mark>g</mark> nvse-	LG N	W DP	9	-QVVYQ <mark>Y</mark> PTW	ΥY	9	IEF <mark>K</mark> FLK	7	WEGGAN	694
cgtBacspl	606	SVREGVI	13	T SP G T	1 LYIY	/ <mark>G</mark> NVNE-	LGN	W DA	9	–QVMYQ <mark>Y</mark> PTW	ΥY	9	LEY <mark>k</mark> yik	8	WQSGNN	686
cgtBacsp7	615	SVREVVN	13	TALGQ	1 VYL	A <mark>g</mark> svse-	LGN	W DP	9	-QVIYQ <mark>Y</mark> PTW	ΥY	9	IEF <mark>K</mark> FLK	7	WEGGSN	694
cgtBacsp3	614	TVREVIN	13	TAL <mark>G</mark> Q	1 VFL	r <mark>g</mark> nvse-	LGN	W DP	9	-QVVYQ <mark>Y</mark> PTw	ΥY	9	IEF <mark>K</mark> FLK	- 7	WEGGAN	693
cgtBacsp63	620	TVRFVIN	13	TLGQ	1 IYL	r <mark>g</mark> nvae-	LGN	WST	10	-QVIHQ <mark>Y</mark> PTW	ΥY	9	LEF <mark>K</mark> FFK	7	WEGGSN	700
cgtBacsp6	606	SIRFAVN	13	T SL <mark>G</mark> T	1 LYI	/ <mark>G</mark> NVNE-	LGN	W DP	9	-QVMYQ <mark>Y</mark> PTW	ΥY	9	LEY <mark>K</mark> FIK	8	WESGNN	686
cgtBacspB	615	SVREVVN	13	TALGQ	1 LYL	r <mark>g</mark> nvse-	LG N	W DP	9	-QVVYQ <mark>Y</mark> PNW	ΥY	9	IEF <mark>K</mark> FLK	7	WEGGSN	694
cgtBacspD	600	SVREVVN	13	TSVGE	1 LYV	/ <mark>G</mark> DVPE-	LGS	W DP	9	-QVLYS <mark>Y</mark> PTW	ΥY	9	IEY <mark>K</mark> YIM	8	WESGNN	680
cqtBacspE	679	SVREGVN	13	TSP <mark>G</mark> T	1 LYIY	/ <mark>G</mark> NVNE-	LGN	WDA	9	-QVMYQ <mark>Y</mark> PTW	ΥY	9	LEY <mark>K</mark> YIK	8	WQSGNN	759
cqtBacspK	628	SVREGVN	13	TSPGT	1 LYIY	/ <mark>G</mark> NVNE-	LGN	WDA	9	-OVMYO <mark>Y</mark> PTW	ΥY	9	LEY <mark>K</mark> YIK	8	WOSGNN	708
catBacst	612	SVRUVVN	13	TNLGO	1 IYIY	/ <mark>G</mark> NVYE-	LGN	W DT	9	-OVVYS <mark>Y</mark> PTW	ΥI	9	IEF <mark>K</mark> FIK	8	WESGSN	692
catGeost	612	SVREVVN	1.3	TNWGE	1 TYL	GNVHE-	LGN	WNT	9	VTYSYPTW	YV	9	TEFKETK	8	WESGSN	692
catKlepn	561	SINETCH	1.3	TISCO	1 VYT	IGNTPO-	LGG	WDL.	7	PTO-YPOW	SA	9	VEWKCVK	11	WOSGAN	640
catThmth	612	CVREVVN	13	TVYGE	1 VYL	GNVAE-	LGN	WDT	9		YY	9	TOFKETK	7	WEGGSN	691
catThesp	636	PATEEVE	2 8	TOVCE	1 LWL	GSVPE-	TSY	WSP	7	PMLCPGWPDW	FV	9	TEFKELK	8	WEVGSN	720
cgt Bacsp5	614	TVRDVI	13	TALCO	1 VEL	CNVSE-	TCN		ģ		vv vv	g	TEEKELK	7	WEGGAN	693
cgt_Blowi	511	TVRIOVE	13	TOPCE	1 VAV		LCD		10		FC	11	VAVEVUT	7	TNENDT-S	622
egt_Mesep7	5/1	TVDVOIN	1 3	TOPCE	1 TIM	CDCDE-	TCM		10	DN IN	го . гл	11	TOVEVAM	7	IDENIT -N	610
cgt_Nossp7	5/1	TVDAOIN	1 3	TOPCE	1 TVV	CDCPF-	TCM		10	JN IN	רת . ביא	11	TAVEVAL	7	I DENI V	610
cgt_Nosspy	613	TADATT	1 3	TVPCE	1 1 1 1 1		MCA	NDA	10		ГЛ . ГГ	а 1	TATATAL	8	WTSDE-T	695
cgt_stcpy	01J E1C	CT DINE	1 2	TVPGE	1 1 1 1 1 1		TON		10	TECCCERCON		2	TAVILLYN	0	WESCO N	09J 505
monrsespr	210	STICKET	. 2	TOMOD	1 11111	CNUCO	LGN	MCD	0	DECC	RA VC	9	VUINIVA	11	WESGGN	595
m4nPsesa	450	AVAPRCI		TOMOD	1 VIA	GNVSQ-	LGN	WSP.	- 7	DTSSIPTW	KG	9	VEWKCLI	11	WQSGGN	530
manpsest	452	SVSERCI		TOMGD	1 VIA	GNVSQ-	LGN	NSP Om	1 1		KG	9	LEWKCLI	11	WQGGAN	532
maaBacst	614	SVVPTVP	(3	INLED	I IYL'	IGNIPE-	LGN	WST	11	PLLAPNYPDW	F'Y	9	TÖF <mark>K</mark> E.E.T	8	WENGSN	698
apuBacst	1341	QVTEKVE	$\langle Z \rangle$	SYTPL	Z RIT.	LPNSLN-	-G-	N N.T.		-G-GAVISDW	EF.	9	TTAKAAK	26	YGAIGT-D	1435
apuBacspX	1337	QVTEKVE		SYTPL	Z RIT.	LPNSIN-	G	WN.T.		-G-GAVTPDW	EF.	9	TTYKYVK	26	YGAIGT-E	1431
apuTheth	1253	KVIENVI	2	DYTPD	1 VNL	AGTFPN-	-AT	W DP	- 7	-IDNNTY	SI	9	IEYKYAR	10	YGNEFASN	1330
apuTheet	1256	KVIFNVI	2	DYTPD	2 ANI	A <mark>G</mark> NFHD-	-AF	WNP	8	GPNTY	SI	9	LEY <mark>K</mark> YAR	10	YGEEIA-N	1333
apuThetc	1261	KVTENVI	2	DYTPD	2 VNI	A <mark>G</mark> NFPD-	-AF	WNP	8	GSNTY	SI	9	IEY <mark>K</mark> YAR	10	YGNEID-N	1338
bmyBacce	451	MQTIVVF	ζ 3	TTIGD	1 VYI	I <mark>G</mark> NRAE –	LGS	WDT.	10	SHSNDW	RG	9	IEF <mark>K</mark> AFI	9	WQTIQQ	530
bmyBacme	451	AQTVVF	ζ 3	TALGE	1 VYIV	/ <mark>G</mark> DRAE-	LGQ	TD W	10	SSTADW	RG	9	VQF <mark>K</mark> AIV	9	WQPSQQ	530
bmyCloth	455	PVTFTIN	13	TY <mark>Y</mark> GQ	1 VYIV	/ <mark>G</mark> STSD-	LG N	W NT	10	N <mark>Y</mark> PTW	ΤI	9	IQF <mark>K</mark> AVK	8	WEGGSN	532
gmyAspaw	539	AVT <mark>F</mark> DLI	2	TT <mark>Y</mark> GE	1 IYL	/ <mark>g</mark> sisq-	LGD	WET	8	DK <mark>Y</mark> TSSNPLW	ΥV	9	FEY <mark>K</mark> FIR	8	WESDPN	618
gmyAspfi	540	AVTEDLI	2	TT <mark>Y</mark> GE	1 IYLY	/ <mark>G</mark> SISQ-	LGD	WET	8	DK <mark>Y</mark> TSSD <mark>P</mark> LW	ΥV	9	FEY <mark>k</mark> fir	8	WESDPN	619
gmyAspka	539	AVTEDLI	2	TT <mark>Y</mark> GE	1 IYL	/ <mark>G</mark> SISQ-	LGD	WET	8	DK <mark>Y</mark> TSSNPLW	ΥV	9	FEY <mark>k</mark> fir	8	WESDPN	618
gmyAspni	540	AVTEDLI	2	TT <mark>Y</mark> GE	1 IYLY	/ <mark>g</mark> sisq-	LGD	WET	8	DK <mark>y</mark> tssdplw	YV	9	FEY <mark>k</mark> fir	8	WESDPN	619
gmyAspor	513	SVTFAVE	τ 2	TV <mark>Y</mark> GE	1 IKI	/ <mark>G</mark> sisq-	LGS	W NP	8	DS <mark>Y</mark> TTDN <mark>P</mark> LW	ΤG	9	FEY <mark>k</mark> fir	7	WESDPN	591
gmyAspsh	539	AVTEDLI	2	TT <mark>Y</mark> GE	1 IYLY	/ <mark>g</mark> sisq-	LGD	WET	8	DK <mark>Y</mark> TSSNPPW	ΥV	9	FEY <mark>K</mark> FIR	8	WESDPN	618
gmyAspte	616	AVTEDEV	1 2	TT <mark>Y</mark> GE	1 VYV	/ <mark>g</mark> sisq-	LGS	TD W	8	SK <mark>Y</mark> TSSNNLW	YV	9	FQY <mark>K</mark> FIR	8	WESDPN	695
gmyCorro	484	EVTEDVY	2	TV <mark>Y</mark> GQ	1 IYI	r <mark>G</mark> DVSE-	LGN	WTP	- 7	SAN <mark>YP</mark> TW	SA	9	IQY <mark>K</mark> YVN	7	WEDAIS-N	559
gmyHorre	508	SITENIN	12	TY <mark>Y</mark> GE	1 LYV	I <mark>G</mark> NSSD-	LGA	WNI	8	SAYTQDRPLW	SA	9	ISYQYVR	7	YIYETV-N	587
gmyHumgr	516	YVTENER	2	TAWGE	1 IKV	/ <mark>g</mark> nvpa-	LGN	TD W	8	SG <mark>Y</mark> KSNDPLW	SI .	10	VQYKYIK	8	WESDPN	596
gmyLened	478	SVTENVI	2	TLEGO	1 VYL	r <mark>g</mark> avda-	LED	WST	7	SANYPTW	SV	9	VOYKYIK	8	WESDPN	553
gmyNeucr	527	LVTENER	2	TSYG0	1 VKV	/GSIAA-	LGN	WAP	8	KQ Y SSSN <mark>P</mark> LW	ST	9	FKY <mark>K</mark> YVV	8	WENDPD	606
gmyTalem	491	AVTEDEI	2	TSYGE	1 IYL	GSIPE-	LGN	WST	8	DA <mark>Y</mark> TNSNPLW	YV	9	FEYKFFK	8	WEDDPN	570
gmy Aspaw	539	AVTRDUT	2	TTYGE	1 IYL	/GSISO-	LGD	TD W	8	DKYTSSNPIW	YV	9	FEYKFIR	- 8	WESDPN	618
amy AsoniT	539	AVTEDU	2	TTYGE	1 TYL	/GSISO-	LGD	WET	8	DKYTSSDPLW	YV	9	FEYKFTR	8	WESDPN	618
amy Neucr	305	AVTINHT	2	TSYGE	1 TKT	/GSTSO-	LCS	WSA	R	SOYTISMPIM	ΤA	9	FEYKEVK	9	WESDPN	385
GagtArtal	866	WATESCE	3	TTEGO	1 VYV	GNVPO-	LGM	WSP	7	PSA-YPTW	TG	10	VEWKCIK	12	WEPGGN	947
4agtBacfr	149		. n		1 T.ATO	GNOKA-	LGN	WDP	Ŕ		A A	10	LEYKEVI	10	WENNPN	212
4agtSoltu	2	KVSBRTT	> 2	TOWCO	1 T.T.T	GSDRI -	T.CC	WNV	2 Q	-SHOCEVIJ	ST .	7	SEVSVVV	- 0	WEVCKK	212
	у 16Л	VVORKTO	, 2 , 2	IGEOT	1 1/1/1/	GTPFK-	T.CM	MKV.	7		EA	10	TKABACK	y R	FESCON	241
	104	TLVNRTT	, J , J	TOMO	1 TTT:	CCEDY-	T.CO		, o	-VHOCNET TH	SC .	â	CUAMAAA	0	SESCEV	271
agwdArath	19 75	BI'MAD11	2	VNFCD	1 17AM	COREA-	TCO	MKK.	U Q	AUGGRETTM	VC	э a	COTNIIA	9 Q	WESCHN	20 117
GenHomes	75 265	SADBOAT	12	STDVO	1 TAN	CDHFC		MULT.	7	KDCDW	SH	2 0	NEMKENI	0	WEECSN	730 74/
lafGalaa	200	LEBICIA	15	7 ECSC	1 TTV	CODIEC-		MDD.	12	ALAAOFDU	JH LC	צ 10	FWVKETD	0 7	WEGNCP	229
lafHomes	2 2	BEBICIN	, J 7 6	CZD-D	1 TTV	CODE-	T.CP	WED.	16	ALALOFPCIN	LC .	12 21	TWINETR	ן ג	WEGNGP	7 N A
donChlow		NERHGV\		UCPAC	1 TOT	MORET TRO-	DCC		10	ALALQEPCDD	лс , VV	< 1 0	TEVENT	0	MOTCS N	104
gebourbt	∠3	TAATREE	2	VOLOD	T T2T,	110	LOG	n n r		worgnr	T/ \	9	T T T T T T T T T T T T T T T T T T T	0	"ATR9N	90

upAspnd1 upAspnd2 upMaggr1 upMaggr1 upMaggr2 upArath upBacag upBurps upCloac upCrypa upDicdi upDrome upGlovi upHomsa upChrvi upMusmuL upMusmuL upMusmuL upMusmuL upMusmuL upOrysa1 upOrysa1 upOrysa2 upRatno upXenla	285 PVT 551 AVT 520 SVT 254 AVT 254 AVT 502 AVS 88 RVR 616 TVR 776 PVA 72 DVT 54 IVK 14 NVT 53 VFN 88 VYR 5 QVA 779 AVA 1	PNAL 2 FNVL 2 FELT 2 FRSK 2 FTVL 2 FTID 3 FQUR 2 FILN 3 FGVK 2 FTID 6 FQLR 2 FTLT 6 FQLI 2 FQL 2 FQL 2 FQL 2 FQL 2	TTYGE TTYGE TTYGE TSVGQ TSVGQ TSVGQ TSVGQ TSVGQ TQLGQ TSIGE TQLGQ TQLGQ TQLGQ TQLGQ GAR-Q CAFGQ CTFGQ LLPGE SDNE-	1 V 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I	YLACSISO-I YIVGSISO-I RLVGSIG-I RLVGSGE-I RLVGSGE-I KKIVGDIED-I KKIVGNIAD-I FIVGDPVFG FLVGDVVF-I YVTGNVAA-I FISCNIKE-I FISCNIKE-I AUVGNLPV-I CSCDA-I YUTGSCDA-I YUTGSCDA-I YUTGSCDA-I 'AUCGSCDA-I 'LVVGDVAA-I LUVGSRKE-M	GSWST GYWVS GYWVS GWDA GSWDA GSWDA GSWDA GNWNT GNWNT GNWNT GRWDY GNWNT GNWNT GNWNT GNWNT GNWNT GNWNT GNWNT GNWNT GNWNT GNWNT GNWNT GNWNT GNWNT GNWNT GNWNT GNWNT GNWNT	8 8 8 7 9 7 7 7 9 8 8 8 9 1 6 7 7 7 7 1 5	SKYSSSELWTV SKNTSSNLWYV DRYSSSOELWAA NDYTASREWKK SQYTSSNELWTT SGWSTNMAWSI WSEGNWTV -QVVYQYETWYY PASYEWRN -TDESIYEDWRN TAILNWSA TAILNWSA TAILNWSA TAILNWSA TAILNWSA TAILWSA AYBSWKN ALALQEPGINLA KDGIWSH ENETGDSVLWKA KDGIWSH ENETGDSVLWKA KDGIWSH ENETGSVLWKA KDGIWSH	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 1 1	FEYRYIR FEYRYIR VEYRYIR VQYAFIN FEYRFIR LEFRFIK LEFRFIK LYAYVR VEFRLL LEFRFIK VQYRYFY VEYRYFR VQYRYFR VQYRYFR LEFRFLL LEYRFVL VKYRYFR FWFFIK	8 8 8 8 8 8 8 8 8 9 9 13 8 8 8 8 9 8 8 8 9 9 8 8 8 9 7	WESGPN WESDPN WEADPN YESGAN WESGAN WQPGPN WQPGPN WENRSGN WENSGN WESIEN WESIEN WESIEN WESIEN WEAIGP-D WETHLQ WEGTAL WEGTAL WEGTAN WEGTAN WEGTAN WEHLQ WEGNGP	364 630 599 628 333 581 164 696 852 153 133 90 138 174 95 855 94 319 95 198 176 93 86
90% cons 80% cons		F	G		G L G L	ig W ig W		W W		K K		▲ O W N	
<u>CBM-21</u>													
amyLipst gmyArxad gmyRhior gmyMucci pfHomsa pfRatno	48 VQL 34 VAL 9 VQL 28 PTT 129 ILE 132 VCL	ASHE 5 SSYS 5 DSYN 5 EAVK 5 STES 5 ENCV 5	-LSAS -LSAS -FSGK -LAGQ SIKGI -IAGT	9 K 9 K 9 K 9 K 9 K	IVTLYYLTS- LVTLYWTNA- KVTVIYADGS TVTVIYSDAS LVYVRMSI VVKISMTF	-SGTT -DNKS DNWNN DNWNN DDWQT DTWKS	8 13 13 13 12 11	SSLSNNWELWSL ASDDQSWELWSL SGSNYEYWTF AGTNYEYWTF CDGETDQFSF TYAGSDRDTFSF	5 12 9 16 15	DAVEI LNITYVA FYIKYEV FYVKYVV FCIRYET FAVCYEC	545555 5555	VDSDASAT KTNSQQL <mark>N</mark> YDNNNSAN YDNNNSG <mark>N</mark> WSNNNGTN WDSNKGKN	129 128 101 125 226 228
pf_MusmuA pf_MusmuH pf_MusmuL pfrsGalga	134 VCL 131 VLE 165 VCL 140 VCL	ENCS 5 SAEH 4 ENCV 5 ESCL 5	-VIGT SMKGI -IAGT -LSGT	9 F 9 F 9 F 9 F	KVQVRITF LVYVRMSL VVKIRMTF KVLVRITF	DTWKT DDWQT DTWKS DGWKS	11 12 11 11	CDGETDQFSF TYAGSDRDTFSF TYGSADMDTFSF	15 16 15 15	FCISIHA FCIRYET FAVCYEC FCISFRC	5 5 5 5	WDNNEGQN WSNNNGTN WDSNKGKN WDNNQGKN	230 227 261 236
pfrsHomsaB pfrsOrycu pfrsSacce1 pfrsSacce2 pfrs_Cloac pfrs_HomsaS	177 VCL 131 MLE 392 VFL 244 VKL 44 QRI 133 VCL	ERVT 5 STEY 5 QEIT 8 HSLT 8 TDDE 5 ENCV 5	-ISGT SMKGI VIIGK -ITGL -VEGY -IAGT	9 H 9 H 9 H 9 H 9 H 9 H	QVAVRYTF LVYVRMS1 KIIVRYTW YLEIKFTF NVYVHYS1 TVKIRMTF	SGWRS DDWQT DAWRT NSWRD DGGKN DTWKS	14 12 14 11 12 11	EGTEDVFTF CDGETDQFSF ILPGSNMDIFKF INSNVDEFKF PSDNYEVWKF TYAGSDRDTFSF	16 16 19 31 14 15	FAVRYQV FCIRYET FCIQYLT LCCRYDV YCFKYEV FAVYYEC	5 5 10 5 5 5	WDNNDHRD WSNNNGT <mark>N</mark> WDNNDSAN YDNNNGKN WDNNNGKN WDSNRGKN	274 228 504 357 138 229
pfrs_HomsaM pfrs_Sacce1 pfrs_Sacce2 pfrs_Xentr upAspnd	157 VCL 424 CNG 209 VSY 112 VCL 440 LER	ENCS 5 VAKG 7 EDIC 8 EQCA 5 LFLS 5	-VTGT LIAGR -IWGL -VAGT -LVGQ	9 H 9 H 9 H 9 H	KVQIRITF RVVVRYTW KIEIKFTI RVTLRVSY HVAARFTF	DS <mark>W</mark> KN DSWRT NNWAD DGWCN DNWRT	11 14 11 15 14	VYGGTDSDTFSF ILPGTNMDIFHF VTPHVDEFKF GDTDSFSF KQLHDGYDRFMF	15 15 33 12 16	FCISYHA FCIHYST FCCRYDV FCICYWC VCIRYNV	5 9 8 5 5 5	WDNNDGQN WDNNNGNN YDNNDYKN WDNNDGKN WDNNETRN	253 530 327 205 540
upCaeell upCaeel2 upCangl1 upCangl2 upCangl3	135 VCV. 247 VSL 177 GSN 286 VSL 419 SGV	AALR 5 ENVI 6 IKLH 8 AQDS 5 DIGT 6	-IVGQ KVMGT -LKGL -IVGK -ISGR	9 F 9 F 9 F 9 F	VVVVRYT1 SVFVRYTM FIEVKFSF FIEVKYTF RVLIRYTW	DGWAT INGWIS 'NNWKD 'NNWND 'DRWRN	14 11 11 11 19	TEDIDAFNF TSKIQDTFKF ITDHIDEFRF ISAEIDEFEF AAMDVFHF	14 15 35 29 15	FCVQYQV FCICFKA LCCRYDV LCCRYDV FCIQYTT	5 5 5 5 9	WDNNGGDN WDSNSGTN YDNNNYKN YDNNNYR <mark>N</mark> WDNNCGKN	230 343 294 394 524
upCang14 upDanre1 upDanre2 upDanre3 upDanreW upDebha1	10 IGF 137 VCL 148 VLL 147 VCL 158 VCL 273 VFL	STGR 7 EHCM 5 ESCN 5 ENCT 5 ENCI 5 ERIF 7	-ITGT -IMGT -VLGT -LTGT -VTGT -LLGH	9 H 9 H 9 H 9 H 9 H 9 H	KVSIRYTW SVKLRITF AVHVRITF SVHVRITF VVHVRITF FITVRYT7	DHWRS NTWKN DSWKT DSWKS DSWKS DNWCT	18 11 11 15 11 19	SQMDIFRF TYTGSNRDTFSF CYGEPGTDVFEF QDTDTFSF VYGCEDVDTFSF NYDRFIF	21 15 15 15 15 30	FCIQYTT FAICYEV FCVSYLP FCISFRT FCLSYKT LCIKYNT	9 5 7 5 5 5 5	WDNNNGKN WDNNQGKN WDNNNGKN WDNNDGRN WDNNDGKN WDNNESRN	821 233 246 243 254 389
upDebha2 upDrome1 upDrome2 upErego1 upErego2	196 YLQ 230 VSL 531 VSL 244 VFL 273 IRL	SIKL 6 ENVI 6 ENAA 7 QDLS 5 NKVS 6	-LV <mark>G</mark> L IVVGT TISGS VMTGR -IK <mark>G</mark> S	9 K 9 K 9 K 9 K 9 K	RLSIKLTF EIIVRVTW SVHIRYSI SVIVRYTW FIEVKFSF	'NA <mark>W</mark> RS DDWKS DGWRS DNWAH DEWKN	16 15 12 14 11	NFDQFKF TCAHVVFDTFSF CDGFSDIFTF VLPGKDMDLFEF VTSKVDEFQF	14 11 14 15 33	FVI <mark>K</mark> YEV FCICYRT FAVRFQC FCIRYQV LCCRYDV	5 5 9 5	WDNNNLKN WDNNDGKN WDNNYGAN WDNNHGNN YDNNNYE <mark>N</mark>	292 329 628 348 386
upHomsaR upHomsaS upKLula1 upKlula2 upMaggr	157 VCL 232 ICL 458 KLH 382 ICH 456 LER	ENCS 5 ERAE 5 ECNS 7 LQDL 8 VWLS 5	-VTGT -VAGS -LTGL -LIGN -LVGS	9 K 9 K 9 K 9 K	KVQIRITF RVSVRWS-A FIEIKFSF RVIVRYT <mark>I</mark> HVTCRFTF	DS <mark>W</mark> KN DGWRS NGWKD DSWKS DY <mark>W</mark> KT	11 14 16 21 14	VYGGTDSDTFSF PPRADRFAF DEFQF IDIDVFQF KESDVGHDRFNF	15 12 29 14 16	FCISYHA FALRYRV LCCRYDV MCILYQT FCVRYNV	5 5 9 5	WDNNDGQ <mark>N</mark> WDNNGGRD YDNNNYE <mark>N</mark> WDNNSGQN WDSNGGAN	253 325 568 490 556
upMusmu upNeucr upXenla1 upXenla2 upXenla3 upXenla4 upYarli	84 PGG 361 LER 127 VCL 112 VCL 138 VCL 152 VCL 664 VYI	SGVW 7 VWLS 5 ENCM 5 EQCA 5 ENCS 5 ENCS 5 ENCS 6	VVRGL -LIGS -LVGT -VAGT -VAGT -VAGT NLVGH	9 K 9 K 9 K 9 K 9 K	AVHVRASH SVTCRFTT CVKIRITF RVTLRVSY SVKIRITF SVKIRITF OVNVRYST	DGWAT DYWKT DSWQT NGWRN NTWKS NTWKS DYWOT	43 14 15 15 15 15 19	PDDGGCTDRFAF SESPLGQDRFNF SDKDTFSF GDTDSFSF TDSDTFSF TDIDTFSF GYDRFTF	15 16 15 12 15 15 18	FVVRYET FCIRYNV FAVCFDC FCFCYWC FCISYES FCISYES LCVRYTA	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	WANNHGRN WDNNNGMN WDSNKGLN WDNHDGKN WDNNDGQN WDNNDGQN WDNNGFON	215 461 223 205 234 248 768
90% cons 80% cons	vill.		G	P F	··········	W W	- /	∆ ▲ F D F F	10		0	▲ N ▲ N	,

Fig. 2. (Continued).

Fig. 4. Evolutionary tree of SBDs from CBM20 and CBM21. For an explanation of the colour code for enzymes and the abbreviations used for the sources, see Table 1. A red dashed line separates the CBM20 family from the CBM21. The tree is based on the alignment of complete SBD sequences including gaps.

CBM20 [24,25], and both families are studied together here for the first time.

The CBM21 part of the tree (Fig. 4) appears more compact than that of CBM20 perhaps simply due to

the smaller number of CBM21 sequences. It may not be surprising that the known CBM21 SBDs from α -amylases and glucoamylases are located in two adjacent clusters positioned most closely to the borderline between the families (gmyArxad, amyLipko, amyLipst, gmyRhior, and gmyMucci). In other words these real SBD CBM21 modules are most closely related to the CBM20 family. Of the remaining nonamylolytic CBM21 sequences, only the module of the regulatory subunit of protein phosphatase from *C. acetobutylicum* (pfrsCloac) was found located clearly among the amylolytic SBDs, reflecting the sequence features discussed above. The rest of the remaining sequences form a large, more or less undifferentiated cluster that gives the possibility of identifying several related subgroups, such as Chordata, Nematoda and Arthropoda, and Fungi (Fig. 4).

The CBM20 part of the tree exhibits several characteristics already well-known from previous bioinformatics analyses [24,25]. These are especially the clustering of the SBDs from bacilli (found in CGTases), actinomycetes (in α -amylases), and fungi (in both α -amylases and glucoamylases). It seems that this reflection of taxonomy is indeed a feature of the evolution of the CBM20 module [24] because cyanobacteria also form a separate cluster, between laforins and the GH13 amylopullulanases (Fig. 4). This trend is supported by four CBM20 modules in GH77 4-α-glucanotransferases, of which the three plant members clustered separately from the bacterial one. Remarkably CBM20 of laforin grouped with SBD from the Thermomonospora curvata α-amylase. This is most interesting because T. curvata CBM20 exhibits all sequence features of a real SBD [66] although it appears away from the other CBM20 modules of actinomycetes [25]. With regard to the large cluster of SBDs from Bacillus CGTases, the positions of the modules from Bacillus agaradhaerens (cgtBacag, upBacag) indicate a slightly different phylogeny (Fig. 4) in accordance with previous findings based on entire CGTase sequences [67]. The sole representative of family GH31, CBM20 of 6-α-glucosyltransferase from actinobacterium Arthrobacter globiformis [68] grouped with the SBDs present in proteobacteria, two in Pseudomonas and one in Klebsiella. The former enzymes are maltotetraose-forming exo-amylases of GH13 and the latter is described as an intermediate between these four-domain hydrolases and five-domain transferases in GH13 [25]. Finally, there is one more novel CBM20 member observed in the α -glucan water dikinase from Arabidopsis thaliana [69], which interestingly is placed on a common branch with the module from the GH77 *Bacteoroides fragilis* 4- α -glucanotransferase, whereas the three plant 4-a-glucanotransferases are positioned separately adjacent to the borderline (Fig. 4).

The proposed joining of the two CBM20 and CBM21 families into one CBM clan raises a question about the

possibility of the existence of an intermediate sequence. The modules from GH13 bacterial amylopullulanases [70–74] clustered most closely to the borderline and rather distant from the other clusters in the CBM20 part of the tree (Fig. 4). This module from amylopullulanase is therefore a candidate for an evolutionary intermediate between the two CBM families. This is in line with the presence of the module in the interior region of the domain organization as seen often in CBM21 (Fig. 1) and opposed to most CBM20 modules being either the N-terminal or the C-terminal domain.

As indicated in Experimental procedures, the most current update of the CAZy server contained 22 and six new members in CBM20 and CBM21, respectively, not present in Table 1. Of the 22 in CBM20, the added members were as follows: seven GH13 (four CGTases, two amylopullulanases, and one maltogenic *a*-amylase), six GH15 glucoamylases (four of them were from patents), one GH77 4- α -glucanotransferase, one genethonin-1 (from rat), five unknown proteins of animal origin (four from insect and one from fish), two carbohydrate esterases of the family CE-1 (both from Archaea), and one endoribonuclease E (from rice). With regard to the six recently added members in CBM21, five were putative protein phosphatases (or their regulatory subunits) and one was the unknown patented sequence from yeast, but there were no new amylolytic enzymes.

It is worth mentioning that the PSI-BLAST [75] searches using the above-mentioned added CBM sequences as queries revealed many new potential members of both CBM families. It is therefore reasonable to expect that in the future the number of members in the families in CAZy will continue to increase, as well as the spectrum of proteins with novel specificities. At present, in addition to the results shown in Fig. 4, the archaeal carbohydrate esterases of the CAZy CE-1 family [3], from Pyrococcus furiosus [76] and Thermococcus kodakaraensis [77], can be of special interest. Their CBM20 modules are most similar to those of GH13 amylopullulanases (possible intermediates between CBM20 and CBM21) included in the present study (Fig. 4). Moreover, and surprisingly, our PSI-BLAST searches clearly indicated that a similar CBM20 module is present in the GH13 (i.e., α -amylase family) branching enzymes (e.g. from Equus caballus [78]), which should also be included in the CAZy CBM20 classification.

Proposal for a new clan of CBM

Based on the bioinformatics analysis of SBD modules from CBM20 and CBM21 families, the hypothesis is proposed that the two types of real (functional) starchbinding domains, i.e., the C- and N-terminal SBDs thus far found in CBM20 and CBM21, respectively, share a common evolutionary origin. Because of this and the likelihood that CBM20 and CBM21 modules have similar secondary and tertiary structures, it is proposed to group the two SBD families, CBM20 and CBM21, into a hierarchically higher level of CAZy classification, i.e., a common CBM clan. An enzyme clan consists of a group of enzyme families with a common ancestry, very similar tertiary structure and conserved catalytic machinery and reaction mechanism [79]. Here we propose that a clan of carbohydratebinding modules contains CBM families having a common evolutionary origin, similar tertiary structure and similar binding site residues, and mode of carbohydrate binding.

Experimental procedures

The set of analysed amino acid sequences of the CBM20 and CBM21 modules includes 181 proteins (Table 1). It was based on information in the CAZy server [3]. At the time of completing the sequence set (October 2004), there were 103 members of the CBM20 and 50 members of the CBM21 (Table 1). The last CAZy update (27 April 2005) contained an additional 22 and six members in CBM20 and CBM21, respectively. All of these sequences were subjected to PSI-BLAST searches [75].

Each SBD in the sequences studied was identified as follows: (a) for CBM20, the solved three-dimensional structures of the SBD from *Bacillus circulans* strain 251 CGTase [33] and *Aspergillus niger* glucoamylase [36,80] were used as templates; and (c) for CBM21, the best studied SBD from *Rhizopus oryzae* glucoamylase [49] was used as template. The exact position and length of the SBDs were, in all individual cases, supported by information extracted from the Pfam database [81] (Pfam Accession No. PF00686 for CBM20 and PF03370 for CBM21) as well as PSI-BLAST searches [75] using the default parameters.

All amino acid sequence alignments were performed using the program CLUSTALW [82] and then the alignments, where applicable, were manually adjusted. First, the sequences from CBM20 and CBM21 were aligned separately, starting with the sequences of amylolytic enzymes because of their mutual similarity. Second, the best conserved regions and residues [23,24], i.e., sequence fingerprints (625_TxxG, 640_LGxW, 661_PxW, and 689_WxxxN; *B. circulans* strain 251 CGTase numbering including the 27-residue long signal peptide), were used in order to get the most reliable alignment of the CBM20 motifs. Finally, the same elements were applied for joining the two CBM families together into a final alignment, which was supported by the hydrophobic cluster analysis method [83]. The sequences were retrieved from GenBank [84] and UniProt [85]. The three-dimensional structures were taken from the PDB [86]. Secondary structures for the CBM21-type SBDs from *Lipomyces kononenkoae* α -amylase and *Rhizopus oryzae* glucoamylase were predicted using the GOR method [87,88] and SAM_T02 [89–91]. Fold recognition data for the CBM21-type SBD from *Rhizopus oryzae* glucoamylase and *Lipomyces kononenkoae* α -amylase were generated by the 3D-PSSM web server [61].

The evolutionary tree was calculated using the neighbour-joining method [92]. The Phylip format tree output was applied using the bootstrapping procedure [93]; the number of bootstrap trials used was 1000. The tree was drawn with the program TREEVIEW [94].

Acknowledgements

This work was financially supported by the VEGA grant no. 2/5067/5 from the Slovak Grant Agency for Science.

References

- 1 Horvathova V, Janecek S & Strudik E (2000) Amylolytic enzymes: their specificities, origins and properties. *Biologia (Bratisl)* 55, 605–615.
- 2 Horvathova V, Janecek S & Strudik E (2001) Amylolytic enzymes: molecular aspects of their properties. *Gen Physiol Biophys* **20**, 7–32.
- 3 Coutinho PM & Henrissat B (1999) Carbohydrateactive enzymes: an integrated database approach. In *Recent Advances in Carbohydrate Bioengineering* (Gilbert HJ, Davies G, Henrissat B & Svensson B, eds), pp. 3– 12. The Royal Society of Chemistry, Cambridge, UK.
- 4 Janecek S (2002) How many conserved sequence regions are there in the α-amylase family? *Biologia (Bratisl)* **57** (Suppl. 11), 29–41.
- 5 MacGregor EA, Janecek S & Svensson B (2001) Relationship of sequence and structure to specificity in the α-amylase family of enzymes. *Biochim Biophys Acta* 1546, 1–20.
- 6 Zona R, Chang-Pi-Hin F, O'Donohue MJ & Janecek S (2004) Bioinformatics of the glycoside hydrolase family 57 and identification of catalytic residues in amylopullulanase from *Thermococcus hydrothermalis*. Eur J Biochem 271, 2863–2872.
- 7 Frandsen TP & Svensson B (1998) Plant α -glucosidases of the glycoside hydrolase family 31. Molecular properties, substrate specificity, reaction mechanism, and comparison with family members of different origin. *Plant Mol Biol* **37**, 1–13.
- 8 Matsuura Y, Kusunoki M, Harada W & Kakudo M (1984) Structure and possible catalytic residues of Takaamylase A. J Biochem 95, 697–702.

- 9 Mikami B, Hehre EJ, Sato M, Katsube Y, Hirose M, Morita Y & Sacchettini JC (1993) The 2.0-Å resolution structure of soybean β-amylase complexed with α-cyclodextrin. *Biochemistry* 32, 6836–6845.
- 10 Lovering AL, Lee SS, Kim YW, Withers SG & Strynadka NCJ (2005) Mechanistic and structural analysis of a family 31 α-glycosidase and its glycosyl-enzyme intermediate. *J Biol Chem* **280**, 2105–2115.
- Aleshin A, Golubev A, Firsov LM & Honzatko RB (1992) Crystal structure of glucoamylase from *Aspergillus awamori* var. X100 to 2.2-Å resolution. *J Biol Chem* 267, 19291–19298.
- 12 Imamura H, Fushinobu S, Yamamoto M, Kumasaka T, Jeon BS, Wakagi T & Matsuzawa H (2003) Crystal structures of 4-α-glucanotransferase from *Thermococcus litoralis* and its complex with an inhibitor. *J Biol Chem* 278, 19378–19386.
- 13 Henrissat B & Davies G (1997) Structural and sequence-based classification of glycoside hydrolases. *Curr Opin Struct Biol* 7, 637–644.
- 14 Rye CS & Withers SG (2000) Glycosidase mechanisms. *Curr Opin Chem Biol* **4**, 573–580.
- 15 Søgaard M, Kadziola A, Haser R & Svensson B (1993) Site-directed mutagenesis of histidine 93, aspartic acid 180, glutamic acid 205, histidine 290, and aspartic acid 291 at the active site and tryptophan 279 at the raw starch binding site in barley α -amylase 1. *J Biol Chem* **268**, 22480–22484.
- 16 Tibbot BK, Wong DWS & Robertson GH (2002)
 Studies on the C-terminal region of barley α-amylase 1 with emphasis on raw starch-binding. *Biologia (Bratisl)* 57 (Suppl. 11), 229–238.
- 17 Hostinova E, Solovicova A, Dvorsky R & Gasperik J (2003) Molecular cloning and 3D structure prediction of the first raw-starch-degrading glucoamylase without a separate starch-binding domain. *Arch Biochem Biophys* **411**, 189–195.
- 18 Kadziola A, Søgaard M, Svensson B & Haser R (1998) Molecular structure of a barley α-amylase-inhibitor complex: implications for starch binding and catalysis. *J Mol Biol* 278, 205–217.
- 19 Robert X, Haser R, Gottschalk TE, Ratajczak F, Driguez H, Svensson B & Aghajari N (2003) The structure of barley α-amylase isozyme 1 reveals a novel role of domain C in substrate recognition and binding: a pair of sugar tongs. *Structure* 11, 973–984.
- 20 Bozonnet S, Bønsager BC, Kramhøft B, Mori H, Abou Hachem M, Willemoës M, Jensen MT, Fukuda K, Nielsen PK, Juge N, Aghajari N, Tranier S, Robert X, Haser R & Svensson B (2005) Binding of carbohydrates and protein inhibitors to the surface of α-amylases. *Biologia (Bratisl)* **60** (Suppl. 16), 27–36.
- 21 Coutinho PM & Henrissat B (1999) The modular structure of cellulases and other carbohydrate-active enzymes: an integrated database approach. In *Genetics*,

Biochemistry and Ecology of Cellulose Degradation (Ohmiya K, Hayashi K, Sakka K, Kobayashi Y, Karita S & Kimura T, eds), pp. 15–23. Uni Publishers Co., Tokyo, Japan.

- Rodriguez-Sanoja R, Oviedo N & Sanchez S (2005) Microbial starch-binding domain. *Curr Opin Microbiol* 8, 260–267.
- 23 Svensson B, Jespersen H, Sierks MR & MacGregor EA (1989) Sequence homology between putative raw-starch binding domains from different starch-degrading enzymes. *Biochem J* 264, 309–311.
- 24 Janecek S & Sevcik J (1999) The evolution of starchbinding domain. *FEBS Lett* **456**, 119–125.
- 25 Janecek S, Svensson B & MacGregor EA (2003) Relation between domain evolution, specificity, and taxonomy of the α -amylase family members containing a C-terminal starch-binding domain. *Eur J Biochem* **270**, 635–645.
- 26 Juge N, Le Gal-Coeffet MF, Furniss CSM, Gunning AP, Kramhoeft B, Morris VJ, Williamson G & Svensson B (2002) The starch binding domain of glucoamylase from *Aspergillus niger*: overview of its structure, function, and role in raw-starch hydrolysis. *Biologia (Bratisl)* 57 (Suppl. 11), 239–245.
- 27 Boraston AB, Bolam DN, Gilbert HJ & Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. *Biochem J* 382, 769–781.
- 28 Bibel M, Brettl C, Gosslar U, Kiegshaeuser G & Liebl W (1998) Isolation and analysis of genes for amylolytic enzymes of the hyperthermophilic bacterium *Thermotoga maritima*. *FEMS Microbiol Lett* **158**, 9–15.
- 29 Sumitani J, Tottori T, Kawaguchi T & Arai M (2000) New type of starch-binding domain: the direct repeat motif in the C-terminal region of *Bacillus* sp, 195 α-amylase contributes to starch binding and raw starch degrading. *Biochem J* **350**, 477–484.
- 30 Abe A, Tonozuka T, Sakano Y & Kamitori S (2004) Complex structures of *Thermoactinomyces vulgaris* R-47 α-amylase 1 with malto-oligosaccharides demonstrate the role of domain N acting as a starch-binding domain. *J Mol Biol* 335, 811–822.
- 31 Rodriguez-Sanoja R, Ruiz B, Guyot JP & Sanchez S (2005) Starch-binding domain affects catalysis in two *Lactobacillus* α-amylases. *Appl Environ Microbiol* 71, 297–302.
- 32 Klein C & Schulz GE (1991) Structure of cyclodextrin glycosyltransferase refined at 2.0 Å resolution. J Mol Biol 217, 737–750.
- 33 Lawson CL, van Montfort R, Strokopytov B, Rozeboom HJ, Kalk KH, de Vries GE, Penninga D, Dijkhuizen L & Dijkstra BW (1994) Nucleotide sequence and X-ray structure of cyclodextrin glycosyltransferase from *Bacillus circulans* strain 251 in a maltose-dependent crystal form. *J Mol Biol* 236, 590–600.

- 34 Knegtel RM, Wind RD, Rozeboom HJ, Kalk KH, Buitelaar RM, Dijkhuizen L & Dijkstra BW (1996) Crystal structure at 2.3 Å resolution and revised nucleotide sequence of the thermostable cyclodextrin glycosyltransferase from *Thermonanaerobacterium thermosulfurigenes* EM1. J Mol Biol 256, 611–622.
- 35 Harata K, Haga K, Nakamura A, Aoyagi M & Yamane K (1996) X-Ray structure of cyclodextrin glucanotransferase from alkalophilic *Bacillus* sp. 1011. Comparison of two independent molecules at 1.8 Å resolution. *Acta Crystallogr* D52, 1136–1145.
- 36 Sorimachi K, Jacks AJ, Le Gal-Coeffet MF, Williamson G, Archer DB & Williamson MP (1996) Solution structure of the granular starch binding domain of glucoamylase from *Aspergillus niger* by nuclear magnetic resonance spectroscopy. J Mol Biol 259, 970–987.
- 37 Oyama T, Kusunoki M, Kishimoto Y, Takasaki Y & Nitta Y (1999) Crystal structure of β-amylase from *Bacillus cereus* var. *mycoides* at 2.2 Å resolution. *J Biochem* 125, 1120–1130.
- 38 Mikami B, Adachi M, Kage T, Sarikaya E, Nanmori T, Shinke R & Utsumi S (1999) Structure of raw starchdigesting *Bacillus cereus* β-amylase complexed with maltose. *Biochemistry* 38, 7050–7061.
- 39 Goto M, Semimaru T, Furukawa K & Hayashida S (1994) Analysis of the raw starch-binding domain by mutation of a glucoamylase from *Aspergillus awamori* var. *kawachi* expressed in *Saccharomyces cerevisiae*. *Appl Environ Microbiol* **60**, 3926–3930.
- 40 Chen L, Coutinho PM, Nikolov Z & Ford C (1995) Deletion analysis of the starch-binding domain of *Aspergillus* glucoamylase. *Protein Eng* 8, 1049–1055.
- 41 Penninga D, van der Veen BA, Knegtel RMA, van Hijum SAFT, Rozeboom HJ, Kalk KH, Dijkstra BW & Dijkhuizen L (1996) The raw starch binding domain of cyclodextrin glycosyltransferase from *Bacillus circulans* strain 251. J Biol Chem 271, 32777–32784.
- 42 Sorimachi K, Le Gal-Coeffet MF, Williamson G, Archer DB & Williamson MP (1997) Solution structure of the granular starch binding domain of *Aspergillus niger* glucoamylase bound to β-cyclodextrin. *Structure* 5, 647–661.
- 43 Giardina T, Gunning AP, Juge N, Faulds CB, Furniss CS, Svensson B, Morris VJ & Williamson G (2001) Both binding sites of the starch-binding domain of *Aspergillus niger* glucoamylase are essential for inducing a conformational change in amylose. J Mol Biol 313, 1149–1159.
- 44 Dalmia BK, Schütte K & Nikolov ZL (1995) Domain E of *Bacillus macerans* cyclodextrin glucanotransferase: an independent starch-binding domain. *Biotechnol Bioeng* 47, 575–584.
- 45 Ohdan K, Kuriki T, Takata H, Kaneko H & Okada S (2000) Introduction of raw starch-binding domains into *Bacillus subtilis* α-amylase by fusion with the starch-

binding domain of *Bacillus* cyclomaltodextrin glucanotransferase. *Appl Environ Microbiol* **66**, 3058–3064.

- 46 Cornett CAG, Fang TY, Reilly PJ & Ford C (2003) Starch-binding domain shuffling in *Aspergillus niger* glucoamylase. *Protein Eng* 16, 521–529.
- 47 Ji Q, Vincken JP, Suurs LCJM & Visser RGF (2003) Microbial starch-binding domains as a tool for targeting proteins to granules during starch biosynthesis. *Plant Mol Biol* 51, 789–801.
- 48 Hua YW, Chi MC, Lo HF, Hsu WH & Lin LL (2004) Fusion of *Bacillus stearothermophilus* leucine aminopeptidase II with the raw-starch-binding domain of *Bacillus* sp. strain TS-23 α-amylase generates a chimeric enzyme with enhanced thermostability and catalytic activity. *J Ind Microbiol Biotechnol* **31**, 273–277.
- 49 Ashikari T, Nakamura N, Tanaka Y, Kiuchi N, Shibano Y, Tanaka T, Amachi T & Yoshizumi H (1986) *Rhizopus* raw-starch-degrading glucoamylase: its cloning and expression in yeast. *Agric Biol Chem* **50**, 957–964.
- 50 Bork P, Dandekar T, Eisenhaber F & Huynen M (1998) Characterization of targeting domains by sequence analysis: glycogen-binding domains in protein phosphatases. J Mol Med 76, 77–79.
- 51 Minassian BA, Ianzano L, Meloche M, Andermann E, Rouleau GA, Delgado-Escueta AV & Scherer SW (2000) Mutation spectrum and predicted function of laforin in Lafora's progressive myoclonus epilepsy. *Neurology* 55, 341–346.
- 52 Janecek S (2002) A motif of a microbial starch-binding domain found in human genethonin. *Bioinformatics* 18, 1534–1537.
- 53 Wang J, Stuckey JA, Wishart MJ & Dixon JE (2002) A unique carbohydrate binding domain targets the lafora disease phosphatase to glycogen. *J Biol Chem* 277, 2377–2380.
- 54 Lohi HT & Minassian BA (2005) Starch-like polyglucosan formation in neuronal dendrites in the Lafora form of human epilepsy: a theory of pathogenesis. *Biologia* (*Bratisl*) **60** (Suppl. 16), 123–129.
- 55 Ceulemans H, Stalmans W & Bollen M (2002) Regulator-driven functional diversification of protein phosphatase-1 in eukaryotic evolution. *Bioessays* 24, 371–381.
- 56 Armstrong CG, Doherty MJ & Cohen PT (1998) Identification of the separate domains in the hepatic glycogentargeting subunit of protein phosphatase 1 that interact with phosphorylase *a*, glycogen and protein phosphatase 1. *Biochem J* 336, 699–704.
- 57 Kaneko T, Nakamura Y, Wolk CP, Kuritz T, Sasamoto S, Watanabe A, Iriguchi M, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kohara M, Matsumoto M, Matsuno A, Muraki A, Nakazaki N, Shimpo S, Sugimoto M, Takazawa M, Yamada M, Yasuda M & Tabata S (2001) Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium *Anabaena* sp. strain PCC 7120. *DNA Res* 8, 205–213.

- 58 Nakamura Y, Kaneko T, Sato S, Mimuro M, Miyashita H, Tsuchiya T, Sasamoto S, Watanabe A, Kawashima K, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Nakazaki N, Shimpo S, Takeuchi C, Yamada M & Tabata S (2003) Complete genome structure of *Gloeobacter violaceus* PCC 7421, a cyanobacterium that lacks thylakoids. *DNA Res* 10, 137–145.
- 59 Wouters J, Bergman B & Janson S (2003) Cloning and expression of a putative cyclodextrin glucosyltransferase from the symbiotically competent cyanobacterium *Nostoc* sp. PCC 9229. *FEMS Microbiol Lett* **219**, 181–185.
- 60 Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M & Tabata S (1996) Sequence analysis of the genome of the unicellular cyanobacterium *Synechocystis* sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential proteincoding regions. *DNA Res* **3**, 109–136.
- 61 Kelley LA, MacCallum RM & Sternberg MJE (2000) Enhanced genome annotation using structural profiles in the program 3D-PSSM. *J Mol Biol* **299**, 499–520.
- 62 Dauter Z, Dauter M, Brzozowski AM, Christensen S, Borchert TV, Beier L, Wilson KS & Davies GJ (1999) X-ray structure of Novamyl, the five-domain 'maltogenic' α-amylase from *Bacillus stearothermophilus*: maltose and acarbose complexes at 1.7 Å resolution. *Biochemistry* 38, 8385–8392.
- 63 Steyn AJ, Marmur J & Pretorius IS (1995) Cloning, sequence analysis and expression in yeasts of a cDNA containing a *Lipomyces kononenkoae* α-amylase-encoding gene. *Gene* 166, 65–71.
- 64 Coutinho PM & Reilly PJ (1997) Glucoamylase structural, functional, and evolutionary relationships. *Proteins* 29, 334–347.
- 65 Williamson MP, Le Gal-Coeffet MF, Sorimachi K, Furniss CS, Archer DB & Williamson G (1997) Function of conserved tryptophans in the *Aspergillus niger* glucoamylase 1 starch binding domain. *Biochemistry* 36, 7535–7539.
- 66 Janda L, Damborsky J, Petricek M, Spizek J & Tichy P (2000) Molecular characterization of the *Thermomonospora curvata* aglA gene encoding a thermotolerant α-1,4-glucosidase. J Appl Microbiol 88, 773–783.
- 67 Martins RF, Delgado O & Hatti-Kaul R (2003) Sequence analysis of cyclodextrin glycosyltransferase from the alkaliphilic *Bacillus agaradhaerens*. *Biotechnol Lett* **25**, 1555–1562.
- 68 Mukai K, Maruta K, Satouchi K, Kubota M, Fukuda S, Kurimoto M & Tsujisaka Y (2004) Cyclic tetra-saccharide-synthesizing enzymes from *Arthrobacter globiformis* A19. *Biosci Biotechnol Biochem* 68, 2529–2540.

- 69 Baunsgaard L, Lutken H, Mikkelsen R, Glaring MA, Pham TT & Blennow A (2005) A novel isoform of glucan, water dikinase phosphorylates pre-phosphorylated α-glucans and is involved in starch degradation in *Arabidopsis. Plant J* **41**, 595–605.
- 70 Mathupala S, Saha BC & Zeikus JG (1990) Substrate competition and specificity at the active site of amylopullulanase from *Clostridium thermohydrosulfuricum*. *Biochem Biophys Res Commun* **166**, 126–132.
- 71 Melasniemi H, Paloheimo M & Hemio L (1990) Nucleotide sequence of the α-amylase-pullulanase gene from *Clostridium thermohydrosulfuricum*. J Gen Microbiol 136, 447–454.
- 72 Lee SP, Morikawa M, Takagi M & Imanaka T (1994) Cloning of the *aapT* gene and characterization of its product, α-amylase-pullulanase (AapT), from thermophilic and alkaliphilic *Bacillus* sp. strain XAL601. *Appl Environ Microbiol* **60**, 3764–3773.
- 73 Sahm K, Matuschek M, Mueller H, Mitchell WJ & Bahl H (1996) Molecular analysis of the *amy* gene locus of *Thermoanaerobacterium thermosulfurigenes* EM1 encoding starch-degrading enzymes and a binding protein-dependent maltose transport system. *J Bacteriol* 178, 1039–1046.
- 74 Chen JT, Chen MC, Chen LL & Chu WS (2001) Structure and expression of an amylopullulanase gene from *Bacillus stearothermophilus* TS-23. *Biotechnol Appl Biochem* 33, 189–199.
- 75 Altschul SF, Stephen F, Madden TL, Schaeffer AA, Zhang J, Zhang Z, Miller W & Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res* 25, 3389–3402.
- 76 Robb FT, Maeder DL, Brown JR, DiRuggiero J, Stump MD, Yeh RK, Weiss RB & Dunn DM (2001) Genomic sequence of hyperthermophile, *Pyrococcus furiosus*: implications for physiology and enzymology. *Methods Enzymol* 330, 134–157.
- 77 Fukui T, Atomi H, Kanai T, Matsumi R, Fujiwara S & Imanaka T (2005) Complete genome sequence of the hyperthermophilic archaeon *Thermococcus kodakaraen*sis KOD1 and comparison with *Pyrococcus* genomes. *Genome Res* 15, 352–363.
- 78 Ward TL, Valberg SJ, Adelson DL, Abbey CA, Binns MM & Mickelson JR (2004) Glycogen branching enzyme (GBE1) mutation causing equine glycogen storage disease IV. *Mamm Genome* 15, 570–577.
- 79 Henrissat B & Bairoch A (1996) Updating the sequencebased classification of glycosyl hydrolases. *Biochem J* 316, 695–696.
- 80 Tanaka Y, Ashikari T, Nakamura N, Kiuchi N, Shibano Y, Amachi T & Yoshizumi H (1986) Comparison of amino acid sequences of three glucoamylases and their structure-function relationships. *Agric Biol Chem* 50, 965–969.

- 81 Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy SR, Griffiths-Jones S, Howe KL, Marshall M & Sonnhammer EL (2002) The Pfam protein families database. *Nucleic Acids Res* 30, 276–280.
- 82 Thompson JD, Higgins DG & Gibson TJ (1994) CLUS-TAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. *Nucleic Acids Res* 22, 4673–4680.
- 83 Callebaut I, Labesse G, Durand P, Poupon A, Canard L, Chomilier J, Henrissat B & Mornon JP (1997) Deciphering protein sequence information through hydrophobic cluster analysis (HCA): current status and perspectives. *Cell Mol Life Sci* 53, 621–645.
- 84 Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J & Wheeler DL (2004) GenBank: update. *Nucleic Acids Res* 32, D23–D26.
- 85 Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Natale DA, O'Donovan C, Redaschi N & Yeh LS (2004) UniProt: the Universal Protein knowledgebase. *Nucleic Acids Res* 32, D115–D119.
- 86 Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, Feng Z, Gilliland GL, Iype L, Jain S, Fagan P, Marvin J, Padilla D, Ravichandran V, Schneider B, Thanki N, Weissig H, Westbrook JD & Zardecki C (2002) The protein data bank. *Acta Crystallogr* D58, 899–907.

- 87 Garnier J, Gibrat JF & Robson B (1996) GOR method for predicting protein secondary structure from amino acid sequence. *Methods Enzymol* 266, 540–553.
- 88 Combet C, Blanchet C, Geourjon C & Deleage G (2000) NPS@: Network Protein Sequence Analysis. *Trends Biochem Sci* 25, 147–150.
- 89 Karplus K, Karchin R, Barrett C, Tu S, Cline M, Diekhans M, Grate L, Casper J & Hughey R (2001) What is the value added by human intervention in protein structure prediction? *Proteins* 45 (S5), 86–91.
- 90 Karchin R, Cline M, Mandel-Gutfreund Y & Karplus K (2003) Hidden Markov models that use predicted local structure for fold recognition: alphabets of backbone geometry. *Proteins* 51, 504–514.
- 91 Karplus K, Karchin R, Draper J, Casper J, Mandel-Gutfreund Y, Diekhans M & Hughey R (2003) Combining local-structure, fold-recognition, and new-fold methods for protein structure prediction. *Proteins* 53 (S6), 491–496.
- 92 Saitou N & Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. *Mol Biol Evol* 4, 406–425.
- 93 Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. *Evolution* **39**, 783–791.
- 94 Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. *Comput Appl Biosci* **12**, 357–358.