Research Article

Oligo-1,6-glucosidase and neopullulanase enzyme subfamilies from the α -amylase family defined by the fifth conserved sequence region

A. Oslancová and Š. Janeček*

Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84251 Bratislava (Slovakia), Fax + 421 2 5930 7416, e-mail: stefan.janecek@savba.sk

Received 12 July 2002; received after revision 28 August 2002; accepted 24 September 2002

Abstract. The α -amylase enzyme family is the largest family of glycoside hydrolases. It contains almost 30 different enzyme specificities covering hydrolases, transferases and isomerases. Some of the enzyme specificities from the family are closely related, others less so. This study, based on the analysis of 79 amino acid sequences, postulates two subfamilies in the framework of the α -amylase family: the oligo-1,6-glucosidase subfamily and the neopullulanase subfamily. The specific sequence in the fifth conserved sequence region of the family served

as the basis for defining the subfamilies: QpDln for the oligo-1,6-glucosidase subfamily and MPKIn for the neopullulanase subfamily. This conserved sequence region is proposed to be the selection marker that enables one to distinguish between the two subfamilies. The 'intermediary' sequence MPDLN can be characteristic of the so-called intermediary group with a mixed enzyme specificity of α -amylase, cyclomaltodextrinase and neopullulanase. The evolutionary trees clearly supported the proposed definition of the two subfamilies.

Key words. Alpha-amylase enzyme family; oligo-1,6-glucosidase; neopullulanase; conserved sequence region; evolutionary relatedness; protein bioinformatics.

The α -amylase enzyme family contains almost 30 different enzyme specificities covering hydrolases, transferases and isomerases [1]. In the sequence-based classification system of glycoside hydrolases it forms a clan GH-H grouping the families 13, 70 and 77 [2]. These enzymes can cleave and/or synthesise the α -1,4-, α -1,6- and less commonly α -1,2- and α -1,3-glucosidic linkages, as well as act on sucrose (α -1,5-bonds) and trehalose (α -1,1-bonds) [1]. The catalytic domain of all of these enzymes should adopt the structure of a parallel (β/α)₈ barrel [1–3] first recognised for amylolytic enzymes in the structure of Taka-amylase A [4] which is an α -amylase from *Aspergillus oryzae*. From sequence and evolutionary points of view, some mammalian transport proteins

and antigens have been suggested to be related to the enzymatically active members of the family [5].

Although the amino acid sequences of α -amylase family members have diverged so efficiently that numerous specificities have emerged, they possess several well-conserved sequence stretches known as conserved sequence regions [1, 3, 6–13]. These contain most of the residues that play important functional roles. Four of them, the regions I, II, III and IV, were definitively established in 1986 [9]. They cover the strands β 3, β 4, β 5 and β 7 of the (β/α)₈ barrel with the three catalytic residues: Asp206, Glu230 and Asp297 (Taka-amylase A numbering) positioned near the C termini of β strands 4, 5 and 7, respectively. Further, three conserved sequence regions, regions V, VI and VII, were identified at the beginning of the 1990s [10–13]. These cover the strands β 2 and β 8 (regions VI and VII)

^{*} Corresponding author.

and a short stretch (region V) near the C terminus of domain B protruding from the catalytic barrel between strand β 3 and helix α 3. The conserved strands β 2 and β 8 were shown to exhibit features characteristic of certain specificities or taxonomic groups [14, 15]. The fifth conserved sequence region, region V (173_LPDLD in Takaamylase A), was originally described for α -amylases [10] and later also identified in the other enzyme specificities from the family [13]. The aspartate from the middle of the region (Asp175 in Taka-amylase A) is well conserved and may be involved in binding of a calcium ion in the enzymes from this family [16].

There have been several reports on evolutionary relationships among the individual enzyme specificities as well as in the frame of a given specificity from the α -amylase family (e.g. [11, 12, 15, 17–25]). In the past few years, however, the number of available sequences has substantially increased (almost 1000 according to the CAZY server accessed on 3 May 2002; [2]) and new enzyme specificities have also been recognised to belong to the family [1]. There may be groups of enzymes in the α -amylase family that are more closely related to each other [1]. In cases when the degree of sequence similarity is very high and the data concerning the characterisation of biochemical activity of a given sequence are lacking or not unambiguous, this may result in incorrect classification. For example, a few sequences of cyclodextrin glucanotransferases were classified incorrectly as α -amylases [26, 27] due to a superficial observation of four conserved sequence regions without deeper analysis [14]. It is thus of special importance to know as exactly as possible the sequence features that are required or at least highly characteristic of each enzyme specificity or enzyme group.

The aim of the present work was to define two enzyme subfamilies within the framework of the α -amylase family: the oligo-1,6-glucosidase subfamily and the neopullulanase subfamily. Both comprise several enzyme specificities and can be distinguished from each other by the specific sequence motif of the fifth conserved sequence region. This region can thus be used as an identification and selection marker. Several amylases that possess a motif containing the features of both the oligo-1,6-glucosidase and neopullulanase subfamilies are proposed to constitute an intermediary group.

Materials and methods

All amino acid sequences as well as enzyme specificities used in the present study are listed in table 1. The listing

Table 1. The α -amylase family enzymes used in the present study.

Enzyme	EC number	Organism	Abbreviation	GenPept	Reference	
Oligo-1,6- glucosidase	3.2.1.10	Bacillus cereus Bacillus coagulans Bacillus flavocaldarius Bacillus sp. F5 Bacillus subtilis	Bacce.ogl Bacco.ogl Bacfl.ogl Bac-F5.ogl Bacsu.ogl	CAA37583.1 BAA11354.1 BAB18518.1 BAA00534.1 AAG23399.1	[28] [29] [30] [31] GenBank Acc. No. AY008307	
		Bacillus thermoglucosidasius Erwinia rhapontici	Bacth.ogl Erwrh.ogl	BAA01368.1 AAK28737.1	[32] [33]	
α-Glucosidase	3.2.1.20	Aedes aegypti Anopheles gambiae (Agm1) Anopheles gambiae (Agm2) Apis meliffera Bacillus sp. DG0303 Bacillus sp. SAM1606 Bacillus stearothermophilus Bifidobacterium adolescentis (AglA)	Aedae.agl Anoga-1.agl Anoga-2.agl Apime.agl Bac-DG.agl Bac-SAM.agl Bacst.agl Bifad-1.agl	AAA29352.1 CAA60857.1 CAA60858.1 BAA11466.1 AAF71997.1 CAA54266.1 BAA12704.1 AAK27723.1	[34] [35] [35] [36] [37] [38] [39] GenBank Acc. No. AF411186	
		Bifidobacterium adolescentis (AglB)	Bifad-2.agl	AAL05573.1	GenBank Acc. No. AF411186	
		Brevibacterium fuscum	Brefu.agl	BAB60692.1	GenBank Acc. No. AB025195	
		Candida albicans Drosophila virilis (Mav1) Drosophila virilis (Mav2) Erwinia rhapontici Kluyveromyces lactis	Canal.agl Drovi-1.agl Drovi-2.agl Erwrh.agl Klula.agl	AAA34350.2 AAB82327.1 AAB82328.1 AAK28739.1 CAB46746.1	[40] [41] [33] GenBank Acc. No. AJ007636	
		Pediococcus pentosaceus	Pedpe.agl	CAA83671.1	GenBank Acc. No. L32093	
		Penicillium minioluteum Pichia angusta Saccharomyces cerevisiae CB11	Penmi.agl Pican.agl Sacce-CB.agl	CAC09327.1 AAF69018.1 AAA34757.1	[42] [43] [44]	

Enzyme	EC number	Organism	Abbreviation	GenPept	Reference	
		Saccharomyces cerevisiae FSP2	Sacce-FSP.agl	BAA07818.1	GenBank Acc. No. DA3761	
		Sinorhizobium meliloti	Sinme.agl	AAD12047.1	[45]	
		Staphylococcus xylosus	Staxy.agl	CAA55409.1	[46]	
		Streptomyces lividans	Strli.agl	AAC46450.1	[47]	
		Thermomonospora curvata	Thscu.agl	AAA57313.1	[48]	
		Thermus caldophilus	Theca.agl	AAD50603.1	[49]	
Dextran	3.2.1.70	Aspergillus parasiticus	Asnna døl	AAF26276.1	[50]	
glucosidase		Streptococcus equisimilis	Stceq.dgl	CAA51348.1	[51]	
8		Streptococcus mutans	Stemu.dgl	AAA26939.1	[52]	
		Streptococcus suis	Stcsu.dgl	AAB65079.1	[53]	
Trehalose-6-P-	3 2 1 93	Bacillus subtilis	Bacsu t6p	CAA91015.1	[54]	
hydrolase		Escherichia coli	Ecoli.t6p	AAC43382.1	[55]	
,		Pseudomonas fluorescens	Psefl.t6p	AAG31032.1	[56]	
Amylosucrase	2.4.1.4	Neisseria polysaccharea	Neipo.asu	CAA09772.1	[22]	
Sucrose	2.4.1.7	Agrobacterium vitis	Agrvi.sph	grvi.sph CAA80424.1		
phosphorylase		Leuconostoc mesenteroides	Leume.sph	BAA14344.1	GenBank Acc.	
		Pseudomonas saccharophila	Psesa.sph	AAD40317.1	GenBank Acc. No. AF158367	
		Streptococcus mutans	Stcmu.sph	AAA26937.1	[58]	
Isomaltulose	5.4.99.11	Erwinia rhapontici	Erwrh.isy	AAK28735.1	[33]	
synthase		Klebsiella sp. LX3	Kle-LX3.isy	AAK82938.1	[59]	
Trehalose synthase	5.4.99.16	Pimelobacter sp. R48	Pim-R48.tsv	BAA11303.1	[60]	
· · · · · · · · · · · · · · · · · · ·		Streptomyces coelicolor	Strco.tsy	CAA04601.2	[61]	
		Thermus aquaticus	Theaq.tsy	BAA19934.1	[62]	
Cyclomalto-	3.2.1.54	Alicyclobacillus acidocaldarius	Aliac.cmd	CAB40078.1	[24]	
dextrinase		Bacillus sp. A2-5a	Bac-A2.cmd	BAA31576.1	GenBank Acc.	
		Bacillus sp. I-5	Bac-I-5.cmd	AAA92925.1	[63]	
		Bacillus sphaericus	Bacsf.cmd	CAA44454.1	[64]	
		Thermoanaerobacter	Thbth.cmd	AAA23219.1	[65]	
		Thermococcus sp. B1001	The B1001 emd	BAB18100 1	[66]	
		Thermotoga maritima	Thtma cmd	AAD36898 1	[67]	
		Thermotoga neapolitana	Thtne.cmd	CAA08867.1	GenBank Acc.	
					No. AJ009832	
Maltogenic amylase	3.2.1.133	Bacillus acidopullulyticus	Bacac.mam	CAA80246.1	GenBank Acc. No. 222520	
-		Bacillus stearothermophilus	Bacst.mam	AAC46346.1	[68]	
		Bacillus subtilis	Bacsu.mam	AAF23874.1	[69]	
		Thermus sp. IM6501	The-IM.mam	AAC15072.1	[70]	
Neopullulanase	3.2.1.135	Bacillus sp. KCTC8848P	Bac-KCT.npu	AAL07400.1	[71]	
-		Bacillus sp. KSM-1876	Bac-KSM.npu	BAA02521.1	[72]	
		Bacillus polymyxa	Bacpo.npu	AAD05199.1	[73]	
		Bacillus stearothermophilus	Bacst-IMA.npu	AAK15003.1	[74]	
		IMA6503				
		Bacillus stearothermophilus TRS40	Bacst-TRS.npu	AAA22622.1	[75]	
		Bacteroides thetaiotaomicron	Batth.npu	AAC44670.1	[76]	
		Thermoactinomyces vulgaris (TVAI)	Thevu-1.npu	BAA02471.1	[77]	
		Inermoactinomyces vulgaris (I VAII)	Thevu-2.npu	BAA024/3.1	[/8]	
Intermediary group (MpDln)	3.2.1.1	Bacillus megaterium	Bacme.amy	CAA30247.1	[79]	
	3.2.1.1	Clostridium acetobutylicum ATCC824	Cloac-ATCC.amy	AAD47072.1	[80]	
	3.2.1.1	Dictyoglomus thermophilum (AmyC)	Dicth-C.amy	CAA34072.1	[81]	
	3.2.1.1	Mycoplasma pulmonis	Mycpu.amy	CAC13805.1	[82]	
	3.2.1.1	Inermotoga martiima Yanthomonas agmostuis (novintogric)	Yanca Dorry	RAD30902.1	[03] [84]	
NT 11 1	J.Z.1.1	Automonus cumpesiris (peripiasific)	Aanua-r.aniy	DAAU/401.1	[0+]	
Neopullulanase-	3.2.1.41	Bacıllus flavocaldarius	Bactl.pul	BAB18516.1	[85]	
nke (MpKIn)	3.2.1.1	<i>Lictyogiomus thermophilum</i> (AmyB)	Dictn-B.amy	CAA31380.1	[81] [84]	
	3 2 1 41	Thermococcus aggregans	Theag pul	CAR04218 1	[80] [87]	
	J. L. I. TI	inermococcus uzzrezuns	r neug.pui	C/1D/1210.1	[0/]	

for the clan GH-H provided by the CAZy web-server (3 May 2002) served as a database [2]. The sequences were retrieved from GenPept on the ENTREZ system [88, 89]. The final set consisting of 79 sequences was obtained using the strategy described as follows:

- (1) First, the search focused on the α -amylase family specificities indicated previously [13, 20] as those with a characteristic sequence motif in their fifth conserved sequence region. These specificities were oligo-1,6-glucosidase and neopullulanase with sequences 167_QPDLN for the Bacillus cereus oligo-1,6-glucosidase [28] and 295_MPKLN for the B. stearothermophilus neopullulanase [75]. As specificities possessing similar motifs, α -glucosidase, dextran glucosidase, trehalose-6-phosphate hydrolase, amylosucrase, sucrose phosphorylase, isomaltulose synthase and trehalose synthase in addition to oligo-1,6-glucosidase, and cyclomaltodextrinase, maltogenic amylase in addition to neopullulanase were recognised. The C-terminal parts of two exceptionally long sequences (Thermus aquaticus trehalose synthase [62] residues 565-963, and Clostridium acetobutylicum ATCC-824 α -amylase [80] residues 541–760) were disregarded.
- (2) In the second step, attention was given to those sequences that were experimentally proven. In other words, all sequences of putative and hypothetical proteins from various complete-genome sequencing projects were disregarded despite their apparently convincing sequence similarity to experimentally confirmed members of the α -amylase family.
- (3) In the next step, BLAST tools [90] were used to find sequences (especially from the α -amylase family) that might be closely related to oligo-1,6-glucosidase and neopullulanase via the fifth conserved sequence region with the previously identified intermediary motif <u>MPDLN</u> [91]. Thus seven sequences were added, all designated as α -amylases. However, since the sequence of the ' α -amylase' from *C. aceto-butylicum* DSM 792 [92] contains a histidine in the position corresponding to catalytic β 4 strand Asp206 from Taka-amylase A, it was not included in the final set. The remaining six sequences were marked as an 'intermediary group'.
- (4) BLAST was also applied for finding the sequences (especially from the α -amylase family) that would have the sequence motif characteristic of either oligo-1,6-glucosidase (QpDln) or neopullulanase (MpKln). This search yielded four sequences with a motif similar to that of neopullulanase (two pullulan hydrolases, one α -amylase and one sequence without assigned specificity). These four sequences were referred to as 'neopullulanase-like'.

(5) Finally, the odd sequence of trehalose synthase from *Pseudomonas stutzeri* [GenBank Acc. No. AF113617] was eliminated from further analysis. It contains many longer insertions in comparison with other trehalose synthases, a strange motif even in the fifth conserved sequence region (259_QPSLN), as well as trehalose-synthase-unlike features in other conserved sequence regions.

All sequence alignments were performed using the program CLUSTAL W [93] and subsequently manually tuned where applicable. The neighbour-joining method was used for building the evolutionary trees [94]. The Phylip format tree output was applied using the bootstrapping procedure [95]; the number of bootstrap trials used was 1000. The trees were drawn with the program TreeView [96].

The three-dimensional structures of oligo-1,6-glucosidase from *B. cereus*, neopullulanase TVAII from *Thermoactinomyces vulgaris* and the high-pI α -amylase isozyme from barley were retrieved from the Protein Data Bank [97] under the PDB entry codes: 1UOK [98], 1BVZ [99] and 1AMY [100], respectively. The protein structures were displayed using the program WebLab-ViewerLite (Molecular Simulations).

Results and discussion

The fifth conserved sequence region as a definition marker

In this study, 79 amino acid sequences of several related enzyme specificites (table 1) from the α -amylase family were compared. The main goal of the present work was to use the fifth conserved sequence region (173_LPDLD in Taka-amylase A) for defining the two closely related subfamilies, i.e. the oligo-1,6-glucosidase subfamily and the neopullulanase subfamily. As can be seen from fig. 1, the sequence of the fifth conserved region is highly specific for both subfamilies with QpDln for the oligo-1,6-glucosidase subfamily and MPKln for the neopullulanase subfamily. These short sequence stretches are proposed as the identification and selection markers or sequence fingerprints for each of the subfamilies.

With regard to enzyme specificities, the oligo-1,6-glucosidase subfamily consists at present of oligo-1,6-glucosidase (for EC numbers, see table 1), α -glucosidase, dextran glucosidase, trehalose-6-phosphate hydrolase, amylosucrase, sucrose phosphorylase, isomaltulose synthase and trehalose synthase. All these enzymes contain in the fifth conserved region the sequence that corresponds to the template sequence QpDln. Worth mentioning is that amylosucrase and sucrose phosphorylases have a hydrophobic residue (tryptophan or isoleucine) in place of the well-conserved proline that is only in five cases re-

	CSR VI	CSR I	CSR V	CSR II	CSR III	CSR IV	CSR VII	
Bacce ogl	44 GIDVINIS	98 DTVVNE	167 OPDLN	195 GERMOVINE	255 DMPG	324 YWNNED	359 GTPYIYOGE	558
Bacco ogl	43 GIDCINIS		167 PPLN	195 GUEMOVIGS	255 PATG	327 YEENED	363 GTPFIYOGE	555
Bacfl ogl	42 GVDALOLS	96 DTVPNH	166 PDLN	194 GEEVEVLWL	265 PTYL	322 VLGNED	352 GTPTWYNGD	529
Bacr-F5 ogl	43 GADVINIC	97 DIWWN	166 PDLN	194 GOLMOVICS	254 BAGG	326 YEENED	362 GNPETYOGE	509
Bac-ru.ogl	43 CADVINIS	07 HTWMH	167 DDLN	195 COMMUTCS	255 BANG	327 VEENIN	363 GTPELYOGE	561
Bacth ogl	AA CUDUUMLS	98 DTWWN	167 PDLN	195 GELMOVINM	256 PTPG	325 YLNNED	361 GTPYIYOGE	562
Enurh ogl	44 GVDVVILS		169 OPDIN	197 GESMOUTOL	243 5785	316 FWSNID	352 GTPVINOGE	551
Erwin.ogi	50 CMDCVOLC		197 ODIN	205 GENTIDAVEN	290 BCVT	351 VLCNED	381 DIAVTYVCE	579
Aedae.agi	63 GIDGVILS	117 DEVENT	100 OPDIN	219 CENTRAVEY	204 BAVT	355 VI CNH	385 EVAUTVNED	199
Anoga-1.agi	62 CMTATALS		197 ODT N	215 CENTRAVEW	297 PAWC	349 VI CNH	380 GITVTYOCE	590
Anoga-2.agi	65 CUDMENTS	110 DEVEN		210 CENTRALDY	286 DAVT	343 VPCNHD	373 GVAVNYVCD	567
Apime.agi	AA CUDUTETE	00 DAUNH	169 070TN	106 CENTRAINI	255 MACC	325 FWCNHD	361 GTRYINGE	562
Bac-DG.agi	44 GVDVIKLN		100 DOLLIN	211 CE-MOUTNA	272 0000	341 VWTNED	377 GTPVINOGE	587
Bac-SAM.agi	AA CUDTUNIC	114 DEVAN	167 DOLM	105 CELIDATCH	256 DANG	321 FLENHD	357 GTPETYOGO	555
Bacst.agi	50 CUDULATE		190 DDIN	217 CRIMOVITO	290 5400	358 FECNIE	396 GTPVIVEGE	604
Difad-2 agl	54 CUDATALS		180 ODDWN	208 GENNWAHG	274 5000	330 VMSNED	391 GSAVVYOGE	590
Brofu adl	58 GVDVLOLS		181 PDLN	209 GEEMOVISE	272 DMVD	341 YWNNED	377 GTPYIYOGE	575
Canal agl	45 GVTTVOLS		173 PDLN	202 GELIDTACM	263 NG	333 FIENED	370 GTLEIYOGO	570
Drovi-1 adl	75 GTTATOLS	129 DEVEN	202 PDLN	230 GENTRAVIY	302 BGYA	364 VMGNHD	394 GIGITYNGE	586
Drovi-2 agl	82 GITATOLS	136 DEVEN	209 PDLN	237 GENTRALN	310 PAYA	372 VMGNUD	402 GVAVTYNGE	524
Frurh agl	43 GIDLINIC	97 DLVVN	166 PDLN	194 GENTRATON	255 PMNG	324 YVENED	360 GTPETYOGO	552
Klula adl	50 GANATOTO		179 PDEN	208 GENTETAGL	274 PTPC	343 YTENHD	380 GTLYVYOGO	583
Pedpe agl	46 GIDVIOLN		169 PDLN	197 GELMOVINO	256 PTHG	327 FWNNED	364 GTPYIYOGE	557
Penmi agl	61 GVDTVWLN	115 DLVVNH	189 PDLN	217 GERMOVINE	277 PMPE	348 YLENHD	385 GTLFIYOGO	597
Pican agl	48 GTDVIOLS		166 PDLN	195 GESTRETAGL	257 DVG	333 FIENED	371 GTLEVYOGO	564
Sacce-CB adl	52 GVDATOVC	106 DLVINH	181 DLN	210 GENINTAGL	276 DVAH	344 YTENHD	381 GTLYVYOGO	584
Sacce-FSP. acl	53 GADATOTS	107 DIVIN	182 OPDLN	211 GESTOVGSL	277 MO	347 YLEN	384 GTLYVYOGO	589
Sinme.agl	56 GADAINIS	110 DIVIS	180 PDLN	208 GEBLOTINE	281 PVGD	340 AFSNID	376 GTVCIYOGE	549
Staxy.agl	44 GIDVINLS	98 DLVVN	168 PDLN	196 GERVEAIT	257 PANG	321 FIENHD	357 GTPFIYOGO	549
Strli.agl	51 GVDAVWET	105 DIVENT	177 PDLN	205 GVRIDSAAL	259 DVWL	316 VLCNHD	368 GSVYLYOGE	534
Theca.ad]	42 GVDAFWLS	96 DLVPNH	166 PDLN	194 GEBVOVLWL	265 BIYL	322 VLGNHD	352 GTPTWYNGD	529
Thscu.agl	58 GVDATWLT	112 DIVPNH	189 PDLN	217 GERIDVAHG	281 DAWV	338 VLSN	373 GSVYLYOGE	544
Asppa.dgl	55 GIDLVWLS	109 DLVVN	183 PDLN	211 GERMOVINM	260 DGSE	327 YLENHD	364 GTPFVYOGO	568
Stcea.dal	44 GITAIWLS	98 DLVVN	162 OPDLN	190 GERMOVIDL	236 DTWG	308 FWNNHD	344 GTPYIYOGE	537
Stcmu.dgl	44 GVMAIWLS	98 DLVVN	162 PDLN	190 GERMOVIDM	236 DTWG	308 FWNNHD	344 GTPYIYOGE	536
Stcsu.dql	42 GIDMIWLN	96 DMVLNH	159 CADLN	187 GEREDVINL	243 DMSA	313 FYNNHD	349 GNNLTSTWV	542
Bacsu.t6p	47 QVDVLWLT	101 DLVVNH	170 CADLN	198 GFRLDVINL	253 EMSS	323 FWCNHD	359 GTPYIYQGE	555
Ecoli.t6p	46 GVDAIWLT	E 100 DMVFNH	168 CADLN	196 GLRLOVVNL	251 EMSS	320 FWCNHD	356 GTPYIYQGE	551
Psefl.t6p	42 GVDCLWIT	B 96 DIVVNE	160 CADLN	188 GFRLDVINL	242 DMSS	312 FWCNHD	348 GTPFVYQGE	548
Neipo.asu	134_GLTYLHLM	IP 190_DFIFNH	262_QWDLN	290 LEMDAVAF	336_DAIV	396_YVRSHD	487_GLPLIYLGD	636
Agrvi.sph	33_LFGGVHAL	E 83_DLIVNE	161_QIDID	189 AIRLDAAGY	233_ EIH S	286_VLDTHD	372_GIPQVYYVG	488
Leume.sph	34_AIGGVHLL	E 82_DFMINE	164_QIDID	192 LIRLDAFAY	237_EIHE	290_TLDTHD	369_GIPQIYYVG	490
Psesa.sph	40_VFGGVHLL	P 90_DVIVNH	168_QIDIA	196_WORLDAVGY	240_EIHA	293_VLDTHD	382_GVPQVYYVG	497
Stemu.sph	34_AVGGVHLL	E 82_DEMINE	161_OLDLD	189_IRLDAFAY	234_DI	287_TLD	366_GIPQVYMVG	481
Erwrh.isy	86_GIDAIMIN	140_DIVINE	209 OPDLN	237 GLEFDTVAT	295 DIFG	364_FLDNHD	391_ATPFIYQGS	600
Kle-LX3.1sy	86_GIDAININ		209 PPLN	237 GMRFDITVAT	295 DIFG	364_FLDNHD	391 ATPFINQUES	598
Pim-R48.tsy	54 GVDCLWVP	108_DEVMN	1/8 PDLN	206 GFISLDAVPY	252 DANO	322_FLENED	385_GSPVLIIGD	5/3
Strco.tsy	62_GVDCLWEP	06 FLVING	165 ODDIN	102 CELLOATEV	240 MUNIM	325 FLRNHD	364 CTPTUVNCD	063
inead.rsy	44_GVNTLAL			195 GENERALEI	272 0010	226 FI TAL	367 CNDVINGD	500
Bacme, any	79 CVNGIMM	120 DW/M	100 MPDIN	219 GENDAAL	262 WUD	335 FLINE	340 CURLEEDER	760
bloth-C amu	70 NITTAL TIM	123 DUVUN	191 MPDIN	200 GELLDAAK	249 0000	300 FIRMIN	341 CNTETVOCE	100
Mucru any	105 GINTINIS	158 DIVEN	231 MPDLN	259 GELVIDAEVH	316 WWK	374 FLONED	421 GSPILVNGN	607
Thitma amy	91 GUDAVOEM		207 MPDLN	235 GELTDAAK	279 EVES	326 FLENHD	370 GSPVINGG	556
Yanga-P amu	79 GVSGTOLM	132 DIVINE	195 MPDLN	223 GEELDAARH	272 DUSA	336 FLSNHD	368 GRPYLYVGE	526
Aliac end	180 GUNI MOT	233 DAVEN	286 PALM	315 60 50 100	349	410 IIC	442 GTPMUYWOD	570
Rac-A2 cmd	189 GINCINET	242 DAVENH	295 P.I.N	324 ONEL DVANE	357 TW	410 LLCSHD	451 GSPCIEVGE	587
Bac-T-5 cmd	185 GUNAVET	238 DWFN	292 PHIN	321 GWELDVANE	354 1170	416 110	448 GTPCIVCD	559
Bacef and	197 CUNALVEN	240 DWFNH	294 PHIN	323 OWEL DVANE	356 TM	A18 LLCSHD	450 GTPCINGD	5.91
Thoth and	185 GINATVET	238 DAVENE	292 PKLM	321 GWRLDVANE	354 000	416 LICSHD	448 GIPVINGD	574
The-B1001 end	257 GUNALVLT	310 DEVEN	384 PPLN	412 GWELDVAHG	442 WMD	502 FLDNHD	533 GUPSTAVON	660
Thtma cmd	82 GINVINI	135 DEVENH	178 PELN	206 GWELDCGHD	239 5107	293 MLDSHD	324 GUPLVYVGT	473
Thtne.cmd	81 GUNAVVLT	134 DEVENIE	177 PELN	205 GVELDCGHD	238 DTWT	292 MLDSHD	323 GVPLVYVGT	472
Bacac.mam	189 GIGGINET	242 DAVENE	295 P3FK	324 GWELDVANE	357 DIWE	419 LVGSHD	451 GTPCIYNGD	586
Bacst.mam	189 GVNGINFT	242 DAVENE	295 PKLN	324 GWELDVANE	357 DIWH	419 LLGSHD	451 GTPCINGD	590
Bacsu, mam	192 GVNGINLT	245 DAVEN	295 PELN	324 GWELDVANE	357 DIWH	419 LLDS	451 GSPCIYYGT	589
The-IM.mam	189 GITGINLT	242 DAVEN	295 PKLN	324 GWELDVANE	357 BIWH	419 LLGS	451 GSPCIYYGD	588
Bac-KCT.npu	70 QVSGLWLM	123 DIVINE	189 MPDLN	217 GESLDAAMH	261 DVWD	323 FLSNHD	355 GOPFLYYGE	510
Bac-KSM.npu	188 GINGINLT	241 DAVENT	294 PELN	323 GWRLDVANE	356 DVW	418 LLGSID	450 GTPCIYYGD	583
Bacpo.npu	70 QVSGLWLM	E 123 DIVINH	189 MPDLN	217 GFELDAAM	261 DVWD	323 FLSNHD	355 GOPFLYYGE	515
Bacst-IMA.npu	189 GITGINLT	E 242 DAVENE	295 PRLN	324 GWRLDVANE	357 DIWE	419 LLGSHD	451 GSPCIYYGD	588
Bacst-TRS.npu	189 GITGIYLT	E 242 DAVENH	295 MPKLN	324 GWRLDVANE	357 DIWH	419 LLGSED	451 GSPCIYYGD	588
Batth.npu	181 GVTSIWLN	E 238 DMIFNE	298 MPDFN	327 GIRODTHPY	360 DTWL	435 FLDNHD	469 GIPQIYYGT	566
Thevu-1.npu	234 GANIL	E 291 DGVFNH	345 LPKLN	381 GWRLDAAQY	425 BYWG	496 FLSNHD	528 GTPTIYYGD	666
Thevu-2.npu	186 GVTALYFT	E 239 DAVENH	293 MPKLR	321 GWRLDVANE	354 DIWH	416_LLDSHD	448_GTPLIYYGD	585
Bacfl.pul	63 GVEAINLN	P 116 DCVFNH	170 LPKLK	198 GWRLDVPNE	232 DIWE	310_LLTSHD	342_GNPTVYYGE	475
Dicth-B.amy	119_GINTIWIS	P 232 DEVPNH	276 MPKIN	305 GYEMDHATG	338 DIVE	399_FLENHD	430_AIPIIYNGQ	562
Kleox.nd	211_GVNGLYLC	E 264 DAVENH	325 MPKLN	354 GWRLDVANE	387_ D IW <mark>H</mark>	449_LLE <mark>SHD</mark>	481_GSPCIYYGS	598
Theag, pul	328 GVTVINLN	E 381 DEVENE	434 PRILN	462 GIBIDAPOE	497 DIWE	559 LVSS:D	601 GMPVTFOGD	726

beta 4

beta 5

beta 7

heta 2

beta 3

beta 8

Figure 1. The conserved sequence regions (CSRs) of oligo-1,6-glucosidase and neopullulanase subfamilies from the α -amylase family. The abbreviations of enzyme sources are given in table 1. The best conserved parts of the sequence of an α -amylase family member comprise the strands β_2 , β_3 , β_4 , β_5 , β_7 and β_8 as well as the short stretch located near the C terminus of loop 3 connecting strand β_3 and he-lix α_3 . The latter fifth conserved sequence region is central to the present study and is therefore boxed. The colour code for the enzymes is as follows: oligo-1,6-glucosidase subfamily – blue; neopullulanase subfamily – red; indermediary group – dark yellow; neopullulanase-like members – pink, transferases – turquoise. The sequence features are highlighted as follows: oligo-1,6-glucosidase subfamily specific – red; transferase specific – turquoise; intermediary group specific – yellow (in CSR V) and green (in CSR II); three catalytic residues – black and white inversion; invariant residues – dark-grey and white inversion; conserved residues (present in at least 75% of the sources) – light grey.

placed by alanine (mostly in trehalose-6-phophate hydrolases). A hydrophobic residue (valine) in this position was furthermore found only (fig. 1) in the α -glucosidase from *Saccharomyces cerevisiae* strain CB11 [44].

As far as the enzyme specificities from the neopullulanase subfamily are concerned, at present this subfamily is formed by three specificities: cyclomaltodextrinase, maltogenic amylase and neopullulanase (for EC numbers, see table 1). The sequence of these enzymes in the fifth conserved region corresponds satisfactorily with the template MPKIn. Although in a few cases, the methionine can be substituted with leucine and the lysine can be replaced by arginine (fig. 1), both changes preserve the chemical nature of the amino acid residue side chain.

The cyclomaltodextrinases from Thermotoga maritima [67] and Thermotoga neapolitana [GenBank Acc. No. AJ009832] contain a glutamate (LPELN; fig. 1) instead of lysine, a fact that could make these two enzymes more similar to the oligo-1,6-glucosidase subfamily with a dominating aspartate. The cyclomaltodextrinase from T. maritima was biochemically characterised as a novel type of this enzyme specificity [101]. Its sequence [67] shares more than 88% sequence identity with that of the T. neapolitana enzyme [GenBank Acc. No. AJ009832]. In most of the remaining conserved sequence regions, however, these two Thermotoga cyclomaltodextrinases exhibit the features of the neopullulanase subfamily (fig. 1) and also contain the neopullulanase-like shorter domain B (for details, see below). Since they lack the N-terminal domain (characteristic of the true members of the neopullulanase subfamily), both these enzymes could represent a new type of cyclomaltodextrinase and thus should not be classified into the neopullulanase subfamily.

Remarkably, three enzymes designated as neopullulanases exhibit an intermediary sequence in the fifth conserved region (MPDIN): Bacillus sp. KCTC8848P [71], B. polymyxa [73] and Bacteroides thetaiotaomicron [76]. The neopullulanase from B. polymyxa was reported as a 'novel' neopullulanase [102] that produced only panose as a final product from pullulan hydrolysis unlike the typical neopullulanase described originally by Imanaka and Kuriki [103]. From the sequence point of view also, it was found [73] to be most similar to α -amylases from *Bacil*lus megaterium [79] and Dictyoglomus thermophilum AmyC [81] both of which are proposed in this work to constitute an 'intermediary group' (see below). This should also be the case of Bacillus sp. KCTC8848P neopullulanase with 92% sequence identity with the B. polymyxa enzyme [71]. The neopullulanase activity of the enzyme from B. thetaiotaomicron [76] was assigned based on the production of panose from pullulan but the activity of this enzyme against pullulan was approximately equal to its activity against amylose [104].

The sequence MPDLN mentioned above is exclusively characteristic of several α -amylases constituting the 'in-

termediary group'. The intermediary character of the sequence MPDLN is in the replacement of oligo-1,6-glucosidase-like glutamine by the neopullulanase-like methionine, whereas the aspartate is conserved as in the oligo-1,6-glucosidase subfamily, i.e. not substituted by the neopullulanase-like lysine (fig. 1). This is consistent with experimental findings that some of these ' α -amylases' appear to have the mixed substrate specificity of α amylase, cyclomaltodextrinase and neopullulanase [84, 105]. The α -amylase from *T. maritima* was found, however, to be active against soluble starch and pullulan in the ratio 100:4 [83], indicating that its neopululanase activity is very low.

In this respect, the two α -amylases from D. thermophilum, designated AmyC and AmyB [81], containing MPDLN and MPKIN, respectively (fig. 1), should be of great interest. Unfortunately, one cannot say unambiguously whether or not these sequence features correlate with the enzyme specificities, due to the lack of specificity analysis data, since both *Dictyoglomus* α -amylases were tested on soluble starch only [81]. Nevertheless, the MPKIN sequence of AmyB indicates that this *Dictyoglo*mus ' α -amylase' could rank among the neopullulanaselike members together with the CymH protein from Klebsiella oxytoca with as yet not determined specificity [86] having MPKLN (fig. 1). Finally, two interesting, extremely thermostable pullulanases, those from Bacillus flavocaldarius [85] and Thermococcus aggregans [87], with LPKLK and LPKLN, respectively, are also included in the group of the so-called 'neopullulanase-like' enzymes (fig. 1).

All these proposals concerning the definition of the oligo-1,6-glucosidase subfamily, the neopullulanase subfamily and the intermediary group, based on the sequence fingerprint of the fifth conserved region, can be supported by the following analysis of the remaining parts of the amino acid sequences.

Subfamily-associated features in the remaining parts of the amino acid sequences

In this section, we will focus on sequence features characteristic of the individual subfamilies and groups that are present in the other conserved sequence regions (fig. 1) as well as in the remaining segments of the complete sequence alignment (not shown).

Thus, in the conserved region VI (strand β 2) there is a tryptophan (Trp49 in *B. cereus* oligo-1,6-glucosidase) characteristic for the oligo-1,6-glucosidase subfamily in the *i-3* position with respect to the conserved C-terminal proline (fig. 1). The neopullulanase subfamily has a tyrosine (Tyr191 in *T. vulgaris* neopullulanase TVAII) in that position (fig. 1). Importantly, the three neopullulanases with the intermediary sequence in the fifth conserved region (Bac-KCT.npu, Bacpo.npu and Batth.npu) do not contain the neopullulanase-like tyrosine but an oligo-1,6-

glucosidase-like tryptophan similar to most of the enzymes from the intermediary group (fig. 1). A glutamine residue present in this position in the α -amylase from *C*. *acetobutylicum* ATCC824 is a conserved feature of the so-called animal group of α -amylases [11]. Of the four enzymes from the neopullulanase-like group, only the ' α amylase' AmyB from *D. thermophilum* has in this position tyrosine replaced by the tryptophan (fig. 1). Of interest is that in the frame of the oligo-1,6-glucosidase subfamily, a group of transferases (EC 2: amylosucrase and sucrose phosphorylases; see table 1) exhibits its own sequence features. All these enzymes have only histidine in the Trp/Tyr position (fig. 1).

A sequence feature discriminating the two subfamilies can also be found in the conserved region I (strand β 3). There is a hydrophobic residue (Leu99 in B. cereus oligo-1,6-glucosidase) versus alanine (glycine) in the oligo-1,6-glucosidase versus neopullulanase subfamilies, respectively, in the position succeeding the almost invariant N-terminal aspartate (fig. 1). Again, the three neopullulanases (Bac-KCT.npu, Bacpo.npu and Batth.npu) with leucine and methionine fulfil the criteria of the intermediary group or, in a wider sense, the entire oligo-1,6-glucosidase subfamily. The fact that the four neopullulanaselike enzymes contain hydrophobic phenylalanine (Dicth-B.amy and Thcag.pul) as well as the alanine and glycine (Bacfl.pul and Kleox.nd) supports the contention that they could also have an intermediary character. As far as the transferases are concerned, in the succeeding position, that is throughout hydrophobic, they have either isoleucine or methionine in comparison with an almost invariantly conserved valine (fig. 1). Note that the isoleucine is also found in the 'odd' neopullulanase from B. thetaiotaomicron (fig. 1).

In conserved sequence region II (strand β 4), there are a few features characteristic of the neopullulanase subfamily. These are the tryptophan (Trp322 in T. vulgaris neopullulanase TVAII) and the stretch VANE at the C terminus of this region (fig. 1). Both these features are not consistently present in all neopullulanases. However, the mutant TVAI enzyme from T. vulgaris whose AAQY stretch is substituted by VANE (as in the TVAII enzyme; cf. fig. 1), in contrast to expectations, did not exhibit the anticipated neopullulanase-like properties [106]. Note that some amylopullulanases also contain at the C-terminal end of this conserved region the stretch VANE or VENE but they have a completely different sequence in their fifth conserved region [S. Janecek, unpublished results]. What is however more important is that the three neopullulanases discussed above (Bac-KCT.npu, Bacpo. npu and Batth.npu) lack both the tryptophan and the VANE stretch completely (fig. 1). Moreover, two of the three (Bac-KCT.npu, Bacpo.npu) contain at the C termini of this region, a histidine that is characteristic for many α amylases and several other specificities from the α -amylase family [1] and which is conserved also in the intermediary group shown in fig. 1. This histidine is found in a few α -glucosidases (Bacst.agl, Drovi-2.agl, Erwrh.agl and Staxy.agl) as is the neopullulanase-like tryptophan in oligo-1,6-glucosidases from *Bacillus coagulans*, *Bacillus* sp. strain F5 and *Bacillus subtilis* (fig. 1). The group of transferases may be distinguished from the rest of the enzymes again by the hydrophobic residue replacing the Nterminal conserved glycine (except for the sucrose phosphorylase from *Agrobacterium vitis*; fig. 1).

Concerning the conserved sequence region III (strand β 5), a C-terminal histidine (*i*+3 position from the catalytic glutamate; Glu354 in T. vulgaris neopullulanase TVAII) can perhaps be considered to be the feature of the neopullulanase subfamily, but its presence in neopullulanases as well as in the neopullulanase-like group is not convincing (fig. 1). As could be expected from the previous analysis, the three - from the sequence point of view - not unambiguous neopullulanases (Bac-KCT.npu, Bacpo.npu and Batth.npu) do not have this histidine. It is, on the other hand, found in four yeast α -glucosidases (Canal.agl, Pican.agl, Sacce-CB.agl and Sacce-FSP.agl; fig. 1). Of the five transferases, all four sucrose phosphorylases (i.e. except for the amylosucrase from Neisseria *polysaccharea*) contain histidine in the i+2 position from the catalytic glutamate; Glu255 in B. cereus oligo-1,6glucosidase). A corresponding histidine is found only in the α -glucosidase from *Pediococcus pentosaceus*.

A similar situation is found for the last two conserved sequence regions, region IV (strand β 7) and region VII (strand β 8). There is a serine preceding the invariant Cterminal dipeptide HD (His420-Asp421 in T. vulgaris neopullulanase TVAII) in the region of strand β 7 and a tyrosine (Tyr454 in T. vulgaris neopullulanase TVAII) in the region of strand $\beta 8$ (fig. 1) that could be ascribed to the neopullulanase subfamily. These two residues, like the C-terminal histidine from the previously conserved sequence region of strand β 5, are not exclusively present in the neopullulanase subfamily members (fig. 1) and thus cannot be used as specificity markers. Interestingly, while in the conserved region VI (strand β 2), the intermediary group contains rather the feature of the oligo-1,6-glucosidase subfamily, in conserved region VII (strand β 8), this group behaves like the members of the neopullulanase subfamily (fig. 1). The four sucrose phosphorylases again have their own features in these two regions: a threonine in β 7 and a value in β 8 (Thr289 and Val379 in A. vitis sucrose phosphorylase). Of these, only the β 7 strand threenine can be found in one of the remaining enzymes, namely in the α -amylase from C. acetobutylicum ATCC824 (fig. 1).

With regard to the five transferases (one amylosucrase and four sucrose phosphorylases; see table 1), their specific features can also be traced in the fifth conserved sequence region that is used as a definition marker in this study. Although they seem to belong to the oligo-1,6-glucosidase subfamily satisfying the sequence criterion QxDln, they have a hydrophobic residue at position 'x' (amylosucrase – tryptophan; sucrose phosphorylases – isoleucine) and the dipeptide 'ln' has been changed to 'id' (fig. 1). Note that from the entire set of 79 sequences studied here, there are only two that are partly similar in this respect: the α -glucosidase from *S. cerevisiae* CB11 contains a valine in position 'x' whereas the α -amylase AmyB from *D. thermophilum* has an isoleucine in the position of 'l' (fig. 1).

As far as the remaining parts of the amino acid sequence alignment are concerned (not shown), several differences can be found that discriminate the two subfamilies from each other. Thus, at the N-terminal part of the alignment, the neopullulanase subfamily enzymes contain an alignable segment that has no equivalent among the oligo-1,6-glucosidase subfamily enzymes. This segment corresponds to the N-terminal domain, preceding the catalytic $(\beta/\alpha)_8$ barrel, found in three-dimensional structures of neopullulanase TVAII from T. vulgaris [99] and Ther*mus* maltogenic amylase [107]. In agreement with observations mentioned above, the 'neopullulanases' from B. polymyxa [73] and Bacillus sp. KCTC8848P [71], lacking the N-terminal domain, behave like the members of the oligo-1,6-glucosidase subfamily or, at least, the enzymes from the intermediary group. The same is true for the T. maritima and T. neapolitana cyclomaltodextrinases [67; GenBank Acc. No. AJ009832] that were also discussed above as exhibiting the neopullulanase-unlike sequence feature in the fifth conserved region (LPELN; fig. 1). The 'odd' neopullulanase from B. thetaiotaomicron [76] seems to contain the N-terminal segment; however, its sequence is evidently different from those of true neopullulanase subfamily enzymes. Of the four neopullulanase-like group enzymes (table 1), the pullulanase from B. flavocaldarius [85] lacks the N-terminal segment, while the other three have some N-terminal sequence. Of these, only the N-terminal segment of the K. oxytoca CymH protein [86] agrees well with the equivalent parts of the enzymes from the neopullulanase subfamily.

The other significant sequence feature distinguishing the two subfamilies can also be seen in domain B. The enzymes belonging to the oligo-1,6-glucosidase subfamily should share the structure of domain B from *B. cereus* oligo-1,6-glucosidase [98], i.e. one α helix and a three-stranded antiparallel β sheet, whereas the enzymes belonging to the neopullulanase subfamily seem to lack the second β strand (153_WQYD in *B. cereus* oligo-1,6-glucosidase) from the antiparallel β sheet, as indicated previously [20]. There are, however, a few enzymes originally designated as cyclomaltodextrinase and neopullulanase that do contain the domain B strand β 2. These are again the three 'odd' neopullulanases (Bac-KCT.npu, Bacpo.npu and Batth.npu) and very probably the cyclo-

maltodextrinase from *Thermococcus* sp. B1001 [66]. Remarkably, the CymH protein from *K. oxytoca*, that looks in the other parts of its sequence like a neopullulanase subfamily enzyme, shares unambiguously the structure of domain B from an oligo-glucosidase, i.e. it contains the second β strand.

The transferases (EC 2; one amylosucrase and four sucrose phosphorylases, table 1) seem to constitute an independent group in the frame of the oligo-1,6-glucosidase subfamily. This was shown in the above discussion concerning the similarities and differences in conserved sequence regions (fig. 1) and is also clear when comparing the entire sequences. For example, there is a strongly conserved tyrosine position (Tyr63 in B. cereus oligo-1,6glucosidase), which is also conserved in the neopullulanase subfamily, but which only in the four sucrose phosphorylases is substituted by a phenylalanine (not shown). In domain B, structurally at least, the amylosucrase should share the structure of the B. cereus domain B with the three-stranded antiparallel β sheet [108]. The amylosucrase from N. polysaccharea [108], moreover, contains a domain B' inserted between the seventh β strand and seventh α helix. Interestingly, all four sucrose phosphorylases have a segment of comparable length inserted in that part of the sequence, but these insertions are not sequentially similar to domain B' of amylosucrase (not shown). The difference between the amylosucrase and sucrose phosphorylases seems to be located at the Nterminal end where the amylosucrase has an N-terminal domain [108] while the sucrose phosphorylases seem to start directly with the catalytic $(\beta/\alpha)_8$ barrel domain (alignment not shown).

Tertiary structure comparison

The sequence changes in the fifth conserved region analysed above (fig. 1) are reflected in the tertiary structures of these enzymes. Figure 2 shows the situation concerning the calcium-binding aspartate from the fifth conserved sequence region (Asp175 in Taka-amylase A) and its equivalents in the counterpart enzymes from the oligo-1,6-glucosidase and neopullulanase subfamilies. In the oligo-1,6-glucosidase subfamily, based on the three-dimensional structure of B. cereus oligo-1,6-glucosidase [98], the aspartate is conserved (fig. 1) but the Ca^{2+} ion, present in α -amylases (fig. 2A), is absent. It is replaced with a presumably protonated N ζ atom of lysine (Lys206 in B. cereus oligo-1,6-glucosidase; fig. 2B). A similar architecture was proposed in amylosucrase [108]. On the other hand, in the neopullulanase subfamily, based on the three-dimensional structure of T. vulgaris neopullulanase [99], the aspartate is replaced by lysine (fig. 1) and the Ca^{2+} ion is absent as expected. In this case, the N ζ atom of the lysine substituting the aspartate (Lys295 in Thermoactinomyces vulgaris neopullulanase) directly occupies the Ca^{2+} position (fig. 2C).

Figure 2. The arrangement of the selected residues involved in binding of a calcium ion in barley α -amylase (A) and the corresponding residues in Bacillus cereus oligo-1,6-glucosidase (B) and Thermoactinomyces vulgaris TVAII neopullulanase (C). The calcium ion in A is shown as a black sphere. For illustration, the entire fifth conserved sequence region with conserved aspartate (A, B)(coloured black) and substituted lysine (C) (coloured black) is depicted. While in α -amylase, the aspartate is involved in Ca²⁺ binding, there is no calcium in either oligo-1,6-glucosidase and neopullulanase. Since in the oligo-1,6-glucosidase (subfamily), the aspartate is conserved, the calcium position is occupied by a binding atom of another residue; N ζ atom of Lys206 in the particular case shown in B (coloured black). In neopullulanase (subfamily), the aspartate is substituted by a residue with the longer side chain of Lys or Arg, and the calcium position is occupied directly by a binding atom of that residue, the N ζ atom of Lys295 in the particular case shown in C.

Evolutionary relationships

The evolutionary relationships among all 79 enzymes studied in this work are shown in figure 3. Both trees clearly reflect the existence of the two subfamilies in the frame of the α -amylase family that was postulated above. Regardless of whether the tree was based on the alignment of complete amino acid sequences (fig. 3 A) or conserved sequence regions only (fig. 3B), the basic arrangement of both trees is very similar. The two subfamilies form their own large clusters with a separated intermediary group and the group of transferases.

In the neopullulanase subfamily part of the tree, the individual enzyme specificities belonging to this subfamily are more or less indistinguishable from each other [1, 24, 109–111] because there are no special branches leading separately to cyclomaltodextrinases, maltogenic amylases and neopullulanases.

Of the four neopullulanase-like enzymes (table 1), three (Kleox.nd, Bacfl.pul and Thcag.pul) can be found among the neopullulanase subfamily members. The most convincing example is the CymH protein from K. oxytoca [86], while the less convincing one seems to be the unique pullulanase from T. aggregans [87]. Indeed, the latter, due to its unique action on pullulan, has been named as pullulan hydrolase type III [87]. Its position on a quite long separate branch in both trees (fig. 3) indicates that, although this enzyme may be closely related to the neopullulanase subfamily, it nevertheless retains its own uniqueness. The enzyme from *B. flavocaldarius* designated as a pullulanase [85, 112], placed in fig. 3 A on a branch adjacent to the cyclomaltodextrinase from Alicyclobacillus acidocaldarius [24], is, in the tree based on the conserved sequence regions (fig. 3B), on a separate branch. The two Thermotoga cyclomaltodextrinases, which simultaneously have the fifth conserved sequence region LPELN, lack the N-terminal domain, contain a shorter domain B and exhibit the neopullulanase-like sequence features (fig. 1), are positioned near the border of the neopullulanase subfamily cluster in both trees (fig. 3). Thus they very probably do not belong to the true neopullulanase subfamily. The 'intermediary' positions of the Bacillus flavocaldarius pullulanase (fig. 3) reflect also both the presence of the neopullulanase-like sequence features (fig. 1) and the lack of the N-terminal domain characteristic for true neopullulanases (data not shown) [85, 109]. The fourth neopullulanase-like enzyme, the ' α -amylase' AmyB from D. thermophilum [81], is positioned in both trees outside the neopullulanase-subfamily part (fig. 3). Its position among the intermediary group (fig. 3 A) seems to be more convincing since it reflects the similarities and differences over the entire amino acid sequence.

The positions in both trees of the three interesting 'neopullulanases' from *Bacillus* sp. KCTC8848P [71], *B. polymyxa* [73] and *B. thetaiotaomicron* [76] deserve special interest. All of these are unambiguously placed outside the neopullulanase subfamily part of the trees, a fact that is in agreement with the analysis of their amino acid sequences given in the previous section. While the enzyme from *B. thetaiotaomicron* occupies slightly different locations in the trees (compare fig. 3 A and B), the two *Bacillus* 'neopullulanases' (Bac-KCT.npu and Bacpo. npu) go well together with each other and with the ' α amylases' from the intermediary group (fig. 3).

Figure 3. Evolutionary trees of oligo-1,6-glucosidase and neopullulanase subfamilies from the α -amylase family. The abbreviations of enzyme sources are given in table 1. The trees are based on the alignment of complete sequences (*A*) and conserved sequence regions shown in figure 1 (*B*). The branch lengths are proportional to the sequence divergence. The colour code for the enzymes is as follows: oligo-1,6-glucosidase subfamily – blue; neopullulanase subfamily – red; intermediary group – dark yellow; neopullulanase-like members – pink, transferases – turquoise.

The oligo-1,6-glucosidase subfamily parts of both evolutionary trees are compact, similar to the neopullulanase subfamily parts. The detailed subtle differences in clustering of the individual enzyme specificities are not so important, and the entire subfamily behaves as one larger cluster. Nevertheless, a few groups can be found as conserved in both trees, e.g. the insect and yeast α -glucosidases (fig. 3). The compactness of the oligo-1,6-glucosidase subfamily is especially evident in the tree based on the alignment of conserved sequence regions (fig. 3B), the intermediary group was inserted between the trehalose synthases and the rest of the enzymes from the oligo-1,6-glucosidase subfamily. This may indicate that the similarities observed in the framework of isolated, although well-conserved and functionally important sequence stretches might not be extendable into a generalisation for the remaining parts of the amino acid sequences.

The group of transferases (EC 2) is also worth mentioning. Although these enzymes are proposed to belong to the oligo-1,6-glucosidase subfamily, their specific sequence features (fig. 1) discriminating them from the rest of the enzyme specificities from the subfamily were discussed in the previous section. This is clearly reflected in both evolutionary trees, where transferases form, in fact, their own clusters (fig. 3), the sucrose phosphorylase and amylosucrase specificities being clustered separately from each other.

Conclusions

To summarise, this work describes the definition of two subfamilies in the framework of the α -amylase family: the oligo-1,6-glucosidase subfamily and the neopullulanase subfamily. They are defined based on the sequence of the fifth conserved sequence region, i.e. identification marker QpDln for the oligo-1,6-glucosidase subfamily and MPKln for the neopullulanase subfamily. The region can simultaneously be used as a marker distinguishing the two subfamilies from each other, i.e. as a selection marker. The sequence MPDLN is proposed as characteristic of the so-called intermediary group with mixed enzyme specificity. The subfamily-associated sequence features are also found in the other conserved sequence regions. The evolutionary trees support the proposed existence of the two subfamilies.

Acknowledgements. This work was financially supported in part by VEGA grant No. 2/2057/22 from the Slovak Grant Agency for Science.

- 1 MacGregor E. A., Janeček Š. and Svensson B. (2001) Relationship of sequence and structure to specificity in the α -amylase family of enzymes. Biochim. Biophys. Acta **1546**: 1–20
- 2 Coutinho P. M. and Henrissat B. (1999) Carbohydrate-active enzymes, http://afmb.cnrs-mrs.fr/~cazy/CAZY/index.html
- 3 Kuriki T. and Imanaka T. (1999) The concept of the α-amylase family: structural similarity and common catalytic mechanism. J. Biosci. Bioeng. 87: 557–565
- 4 Matsuura Y., Kusunoki M., Harada W. and Kakudo M. (1984) Structure and possible catalytic residues of Taka-amylase A. J. Biochem. 95: 697–702
- 5 Janeček Š. (2000) Proteins without enzymatic function with sequence relatedness to the α -amylase family. Trends Glycosci. Glycotechnol. **12:** 363–371
- 6 Toda H., Kondo K. and Narita K. (1982) The complete amino acid sequence of Taka-amylase A. Proc. Jpn Acad. B58: 208–212
- 7 Friedberg F. (1983) On the primary structure of amylases. FEBS Lett. **152**: 139–140
- 8 Rogers J. C. (1985) Conserved amino acid sequence domains in α-amylases from plants, mammals, and bacteria. Biochem. Biophys. Res. Commun. **128**: 470–476
- 9 Nakajima R., Imanaka T. and Aiba S. (1986) Comparison of amino acid sequences of eleven different α-amylases. Appl. Microbiol. Biotechnol. 23: 355–360
- 10 Janeček Š. (1992) New conserved amino acid region of α amylases in the third loop of their (β/α)₈-barrel domains. Biochem. J. **288**: 1069–1070
- Janeček Š. (1994) Sequence similarities and evolutionary relationships of microbial, plant and animal α-amylases. Eur. J. Biochem. 224: 519–524
- 12 Janeček Š. (1994) Parallel β/α -barrels of α -amylase, cyclodextrin glycosyltransferase and oligo-1,6-glucosidase versus the barrel of β -amylase: evolutionary distance is a reflection of unrelated sequences. FEBS Lett. **353:** 119–123
- 13 Janeček Š. (1995) Close evolutionary relatedness among functionally distantly related members of the $(\alpha/\beta)_8$ -barrel glycosyl hydrolases suggested by the similarity of their fifth conserved sequence region. FEBS Lett. **377:** 6–8
- 14 Janeček Š., MacGregor E. A. and Svensson B. (1995) Characteristic differences in the primary structure allow discrimination of cyclodextrin glucanotransferases from α-amylases. Biochem. J. 305: 685–686

- 15 Janeček Š., Leveque E., Belarbi A. and Haye B. (1999) Close evolutionary relatedness of α -amylases from archaea and plants. J. Mol. Evol. **48:** 421–426
- 16 Boel E., Brady L., Brzozowski A. M., Derewenda Z., Dodson G. G., Jensen V. J. et al. (1990) Calcium binding in α-amylases: an X-ray diffraction study at 2.1-Å resolution of two enzymes from *Aspergillus*. Biochemistry **29**: 6244–6249
- 17 Jespersen H. M., MacGregor E. A., Henrissat B., Sierks M. R. and Svensson B. (1993) Starch- and glycogen-debranching and branching enzymes: prediction of structural features of the catalytic (β/α)₈-barrel domain and evolutionary relationship to other amylolytic enzymes. J. Protein Chem. **12**: 791–805
- 18 MacGregor E. A., Jespersen H. M. and Svensson B. (1996) A circularly permuted α -amylase-type α/β -barrel structure in glucan-synthesizing glucosyltransferases. FEBS Lett. **378**: 263–266
- 19 del-Rio G., Morett E. and Soberon X. (1997) Did cyclodextrin glycosyltransferases evolve from α -amylases? FEBS Lett. **416:** 221–224
- 20 Janeček Š., Svensson B. and Henrissat B. (1997) Domain evolution in the α-amylase family. J. Mol. Evol. 45: 322–331
- 21 Da Lage J. L., Renard E., Chartois F., Lemeunier F. and Cariou M. L. (1998) *Amyrel*, a paralogous gene of the amy-lase gene family in *Drosophila melanogaster* and the *Sophophora* subgenus. Proc. Natl. Acad. Sci. USA **95:** 6848– 6853
- 22 De Montalk G. P., Remaud-Simeon M., Willemot R. M., Planchot V. and Monsan P. (1999) Sequence analysis of the gene encoding amylosucrase from *Neisseria polysaccharea* and characterization of the recombinant enzyme. J. Bacteriol. **181**: 375–381
- 23 Jones R. A., Jermiin L. S., Easteal S., Patel B. K and Beacham I. R. (1999) Amylase and 16S rRNA genes from a hyperthermophilic archaebacterium. J. Appl. Microbiol. 86: 93–107
- 24 Matzke J., Herrmann A., Schneider E. and Bakker E. P. (2000) Gene cloning, nucleotide sequence and biochemical properties of a cytoplasmic cyclomaltodextrinase (neopullulanase) from *Alicyclobacillus acidocaldarius*, reclassification of a group of enzymes. FEMS Microbiol. Lett. **183**: 55–61
- 25 Pujadas G. and Palau J. (2001) Evolution of α -amylases: architectural features and key residues in the stabilization of the $(\beta/\alpha)_8$ scaffold. Mol. Biol. Evol. **18**: 38–54
- 26 Nishizawa M., Ozawa F. and Hishinuma F. (1987) Molecular cloning of an amylase gene of *Bacillus circulans*. DNA 6: 255–265
- 27 Bahl H., Burchhardt G., Spreinat A., Haeckel K., Wienecke A., Schmidt B. et al. (1991) α-Amylase of *Clostridium thermosulfurogenes* EM1: nucleotide sequence of the gene, processing of the enzyme, and comparison of other α-amylases. Appl. Environ. Microbiol. **57**: 1554–1559
- 28 Watanabe K., Kitamura K., Iha H. and Suzuki Y. (1990) Primary structure of the oligo-1,6-glucosidase of *Bacillus cereus* ATCC7064 deduced from the nucleotide sequence of the cloned gene. Eur. J. Biochem. **192**: 609–620
- 29 Watanabe K., Kitamura K. and Suzuki Y. (1996) Analysis of the critical sites for protein thermostabilization by proline substitution in oligo-1,6-glucosidase from *Bacillus coagulans* ATCC 7050 and the evolutionary consideration of proline residues. Appl. Environ. Microbiol. **62**: 2066–2073
- 30 Kashiwabara S., Matsuki Y., Kishimoto T. and Suzuki Y. (1998) Clustered proline residues around the active-site cleft in thermostable oligo-1,6-glucosidase of *Bacillus flavocaldarius* KP1228. Biosci. Biotechnol. Biochem. **62**: 1093–1102
- 31 Yamamoto M. and Horikoshi K. (1990) Nucleotide sequence of alkalophilic *Bacillus* oligo-1,6-glucosidase gene and the properties of the gene product by *Escherichia coli* HB101. Denpun Kagaku 37: 137–144

- 32 Watanabe K., Chishiro K., Kitamura K. and Suzuki Y. (1991) Proline residues responsible for thermostability occur with high frequency in the loop regions of an extremely thermostable oligo-1,6-glucosidase from *Bacillus thermoglucosidasius* KP1006. J. Biol. Chem. **266**: 24287–24294
- 33 Börnke F., Hajirezaei M. and Sonnewald U. (2001) Cloning and characterization of the gene cluster for palatinose metabolism from the phytopathogenic bacterium *Erwinia rhapontici*. J. Bacteriol. **183**: 2425–2430
- 34 James A. A., Blackmer K. and Racioppi J. V. (1989) A salivary gland-specific, maltase-like gene of the vector mosquito, *Aedes aegypti*. Gene 75: 73–83
- 35 Zheng L., Whang L.H., Kumar V. and Kafatos F. C. (1995) Two genes encoding midgut-specific maltase-like polypeptides from *Anopheles gambiae*. Exp. Parasitol. 81: 272–283
- 36 Ohashi K., Sawata M., Takeuchi H., Natori S. and Kubo T. (1996) Molecular cloning of cDNA and analysis of expression of the gene for α -glucosidase from the hypopharyngeal gland of the honeybee *Apis mellifera* L. Biochem. Biophys. Res. Commun. **221**: 380–385
- 37 Lee Y. E. (2000) Cloning and characterization of α-glucosidase gene from thermophilic *Bacillus* sp. DG0303. J. Microbiol. Biotechnol. **10**: 244–250
- 38 Nakao M., Nakayama T., Kakudo A., Inohara M., Harada M., Omura F. et al. (1994) Structure and expression of a gene coding for thermostable α-glucosidase with a broad substrate specificity from *Bacillus* sp. SAM1606. Eur. J. Biochem. 220: 293–300
- 39 Takii Y., Takahashi K., Yamamoto K., Sogabe Y. and Suzuki Y. (1996) *Bacillus stearothermophilus* ATCC12016 α-glucosidase specific for α-1,4 bonds of maltosaccharides and α-glucans shows high amino acid sequence similarities to seven α-D-glucohydrolases with different substrate specificity. Appl. Microbiol. Biotechnol. 44: 629–634
- 40 Geber A., Williamson P. R., Rex J. H., Sweeney E. C. and Bennett J. E. (1992) Cloning and characterization of a *Candida albicans* maltase gene involoved in sucrose utilization. J. Bacteriol. 174: 6992–6996
- 41 Vieira C. P., Vieira J. and Hartl D. L. (1997) The evolution of small gene clusters: evidence for an independent origin of the maltase gene cluster in *Drosophila virilis* and *Drosophila melanogaster*. Mol. Biol. Evol. **14:** 985– 993
- 42 Garcia B., Castellanos A., Menendez J. and Pons T. (2001) Molecular cloning of an α -glucosidase-like gene from *Penicillium minioluteum* and structure prediction of its gene product. Biochem. Biophys. Res. Commun. **281:** 151– 158
- 43 Liiv L., Parn P. and Alamae T. (2001) Cloning of maltase gene from a methylotrophic yeast, *Hansenula polymorpha*. Gene 265: 77–85
- 44 Hong S. H. and Marmur J. (1986) Primary structure of the maltase gene of MAL6 locus of *Saccharomyces carlsbergen*sis. Gene **41**: 75–84
- 45 Willis L. B. and Walker G. C. (1999) A novel *Sinorhizobium meliloti* operon encodes an α-glucosidase and a periplasmic-binding-protein-dependent transport system for α-glucosides. J. Bacteriol. **181:** 4176–4184
- 46 Egeter O. and Bruckner R. (1995) Characterization of a genetic locus essential for maltose-maltotriose utilization in *Staphylococcus xylosus*. J. Bacteriol. **177**: 2408–2415
- 47 Piendl W., Eichenseer C., Viel P., Altenbuchner J. and Cullum J. (1994) Analysis of putative DNA amplification genes in the element AUD1 of *Streptomyces lividans* 66. Mol. Gen. Genet. 244: 439–443
- 48 Janda L., Damborsky J., Petricek M., Spizek J. and Tichy P. (2000) Molecular characterization of the *Thermomonospora curvata* aglA gene encoding a thermotolerant α-1,4-glucosidase. J. Appl. Microbiol. **88**: 773–783

- 49 Nashiru O., Koh S., Lee S. Y. and Lee D. S. (2001) Novel αglucosidase from extreme thermophile *Thermus caldophilus* GK24. J. Biochem. Mol. Biol. 34: 347–354
- 50 Yu J., Chang P., Bhatnagar D. and Cleveland T. E. (2000) Cloning of a sugar utilization gene cluster in *Aspergillus* parasiticus. Biochim. Biophys. Acta 1493: 211–214
- 51 Mechold U., Steiner K., Vettermann S. and Malke H. (1993) Genetic organization of the streptokinase region of the *Streptococcus equisimilis* H46A chromosome. Mol. Gen. Genet. 241: 129–140
- Russell R. R. and Ferretti J. J. (1990) Nucleotide sequence of the dextran glucosidase (dexB) gene of *Streptococcus mutans*. J. Gen. Microbiol. 136: 803–810
- 53 Serhir B., Dugourd D., Jacques M., Higgins R. and Harel J. (1997) Cloning and characterization of a dextranase gene (dexS) from *Streptococcus suis*. Gene **190**: 257–261
- 54 Helfert C., Gotsche S. and Dahl M. K. (1995) Cleavage of trehalose-phosphate in *Bacillus subtilis* is catalysed by a phospho- α -(1-1)-glucosidase encoded by the *treA* gene. Mol. Microbiol. **16:** 111–120
- 55 Boos W., Ehmann U., Forkl H., Klein W., Rimmele M. and Postma P. (1990) Trehalose transport and metabolism in *Escherichia coli*. J. Bacteriol. **172**: 3450–3461
- 56 Matthijs S. L. C., Koedam N., Cornelis P. and De Greve H. (2000) The trehalose operon of *Pseudomonas fluorescens* ATCC 17400. Res. Microbiol. **151**: 845–851
- 57 Fournier P., Ruffray P. de and Otten L. (1994) Natural instability of *Agrobacterium vitis* Ti plasmid due to unusual duplication of a 2.3-kb DNA fragment. Mol. Plant Microbe Interact. 7: 164–172
- 58 Ferretti J. J., Huang T. T. and Russell R. R. (1988) Sequence analysis of the glucosyltransferase A gene (*gtfA*) from *Streptococcus mutans* Ingbritt. Infect. Immun. 56: 1585–1588
- 59 Zhang D., Li X. and Zhang L. H. (2002) Isomaltulose synthase from *Klebsiella* sp. strain LX3: gene cloning and characterization and engineering of thermostability. Appl. Environ. Microbiol. 68: 2676–2682
- 60 Tsusaki K., Nishimoto T., Nakada T., Kubota M., Chaen H., Sugimoto T. et al. (1996) Cloning and sequencing of trehalose synthase gene from *Pimelobacter* sp. R48. Biochim. Biophys. Acta **1290**: 1–3
- 61 Schneider D., Bruton C. J. and Chater K. F. (2000) Duplicated gene clusters suggest an interplay of glycogen and trehalose metabolism during sequential stages of aerial mycelium development in *Streptomyces coelicolor* A3(2). Mol. Gen. Genet. **263**: 543–553
- 62 Tsusaki K., Nishimoto T., Nakada T., Kubota M., Chaen H., Fukuda S. et al. (1997) Cloning and sequencing of trehalose synthase gene from *Thermus aquaticus* ATCC33923. Biochim. Biophys. Acta 1334: 28–32
- 63 Kim T. J., Shin J. H., Oh J. H., Kim M. J., Lee S. B., Ryu S. et al. (1998) Analysis of the gene encoding cyclomaltodextrinase from alkalophilic *Bacillus* sp. I-5 and characterization of enzymatic properties. Arch. Biochem. Biophys. **353**: 221– 227
- 64 Oguma T., Matsuyama A., Kikuchi M. and Nakano E. (1993) Cloning and sequence analysis of the cyclomaltodextrinase gene from *Bacillus sphaericus* and expression in *Escherichia coli* cells. Appl. Microbiol. Biotechnol. **39:** 197–203
- 65 Podkovyrov S. M. and Zeikus J. G. (1992) Structure of the gene encoding cyclomaltodextrinase from *Clostridium thermohydrosulfuricum* 39E and characterization of the enzyme purified from *Escherichia coli*. J. Bacteriol. **174**: 5400–5405
- 66 Hashimoto Y., Yamamoto T., Fujiwara S., Takagi M. and Imanaka T. (2001) Extracellular synthesis, specific recognition, and intracellular degradation of cyclomaltodextrins by the hyperthermophilic archaeon *Thermococcus* sp. strain B1001. J. Bacteriol. **183**: 5050–5057

- 67 Nelson K. E., Clayton R. A., Gill S. R., Gwinn M. L., Dodson R. J., Haft D. H. et al. (1999) Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of *Thermotoga maritima*. Nature **399**: 323–329
- 68 Cha H. J., Yoon H. G., Kim Y. W., Lee H. S., Kim J. W., Kweon K. S. et al. (1998) Molecular and enzymatic characterization of a maltogenic amylase that hydrolyzes and transglycosylates acarbose. Eur. J. Biochem. 253: 251–262
- 69 Cho H. Y., Kim Y. W., Kim T. J., Lee H. S., Kim D. Y., Kim J. W. et al. (2000) Molecular characterization of a dimeric intracellular maltogenic amylase of *Bacillus subtilis* SUH4-2. Biochim. Biophys. Acta 1478: 333–340
- 70 Kim T. J., Kim M. J., Kim B. C., Kim J. C., Cheong T. K., Kim J. W. et al. (1999) Modes of action of acarbose hydrolysis and transglycosylation catalyzed by a thermostable maltogenic amylase, the gene for which was cloned from a *Thermus* strain IM6501. Appl. Environ. Microbiol. 65: 1644–1651
- 71 Kim H. J., Park J. N., Kim H. O., Shin D. J., Chin J. E., Lee H. B. et al. (2002) Cloning and expression of a *Paenibacillus* sp. neopullulanase gene in *Saccharomyces cerevisiae* producing *Schwanniomyces occidentalis* glucoamylase. J. Microbiol. Biotechnol. **12**: 340–344
- 72 Igarashi K., Ara K., Saeki K., Ozaki K., Kawai S. and Ito S. (1992) Nucleotide sequence of the gene that encodes a neopullulanase from an alkalophilic *Bacillus*. Biosci. Biotechnol. Biochem. 56: 514–516
- 73 Yebra M. J., Blasco A. and Sanz P. (1999) Expression and secretion of *Bacillus polymyxa* neopullulanase in *Saccharomyces cerevisiae*. FEMS Microbiol. Lett. **170**: 41–49
- 74 Cheong K. A., Kim T. J., Yoon J. W., Park C. S., Lee T. S., Kim Y. B. et al. (2002) Catalytic activities of intracellular dimeric neopullulanase on cyclodextrin, acarbose and maltose. Biotechnol. Appl. Biochem. 35: 27–34
- 75 Kuriki T. and Imanaka T. (1989) Nucleotide sequence of the neopullulanase gene from *Bacillus stearothermophilus*. J. Gen. Microbiol. **135**: 1521–1528
- 76 D'Elia J. N. and Salyers A. A. (1996) Contribution of a neopullulanase, a pullulanase, and an α -glucosidase to growth of *Bacteroides thetaiotaomicron* on starch. J. Bacteriol. **178**: 7173–7179
- 77 Tonozuka T., Mogi S., Shimura Y., Ibuka A., Sakai H., Matsuzawa H. et al. (1995) Comparison of primary structures and substrate specificities of two pullulan-hydrolyzing α-amylases, TVA I and TVA II, from *Thermoactinomyces vulgaris* R-47. Biochim. Biophys. Acta **1252:** 35–42
- 78 Tonozuka T., Ohtsuka M., Mogi S., Sakai H., Ohta T. and Sakano Y. (1993) A neopullulanase-type α -amylase gene from *Thermoactinomyces vulgaris* R-47. Biosci. Biotechnol. Biochem. **57**: 395–401
- 79 Metz R. J., Allen L. N., Cao T. M. and Zeman N. W. (1988) Nucleotide sequence of an amylase gene from *Bacillus megaterium*. Nucleic Acids Res. 16: 5203
- 80 Sabathe F., Cornillot E., Croux C. and Soucaille P. (2002) Molecular characterization of amyP, a pSOL1 located gene coding the major α-amylase of *Clostridium acetobutylicum* ATCC824, and its use as a reporter system for strain degeneration. FEMS Microbiol. Lett. **210**: 93–98
- 81 Horinouchi S., Fukusumi S., Ohshima T. and Beppu T. (1988) Cloning and expression in *Escherichia coli* of two additional amylase genes of a strictly anaerobic thermophile, *Dictyoglomus thermophilum*, and their nucleotide sequences with extremely low guanine-plus-cytosine contents. Eur. J. Biochem. **176:** 243–253
- 82 Chambaud I., Heilig R., Ferris S., Barbe V., Samson D., Galisson F. et al. (2001) The complete genome sequence of the murine respiratory pathogen *Mycoplasma pulmonis*. Nucleic Acids Res. 29: 2145–2153
- 83 Liebl W., Stemplinger I. and Ruile P. (1997) Properties and gene structure of the *Thermotoga maritima* α-amylase AmyA,

a putative lipoprotein of a hyperthermophilic bacterium. J. Bacteriol. **179:** 941–948

- 84 Abe J., Shibata Y., Fujisue M. and Hizukuri S. (1996) Expression of periplasmic α-amylase of *Xanthomonas campestris* K-11151 in *Escherichia coli* and its action on maltose. Microbiology **142:** 1505–1512
- 85 Kashiwabara S., Ogawa S., Miyoshi N., Oda M. and Suzuki Y. (1999) Three domains comprised in thermostable molecular weight 54,000 pullulanase of type I from *Bacillus flavocaldarius* KP1228. Biosci. Biotechnol. Biochem. **63**: 1736–1748
- 86 Fiedler G., Pajatsch M. and Bock A. (1996) Genetics of a novel starch utilisation pathway present in *Klebsiella oxytoca*. J. Mol. Biol. 256: 279–291
- 87 Niehaus F., Peters A., Groudieva T. and Antranikian G. (2000) Cloning, expression and biochemical characterisation of a unique thermostable pullulan-hydrolysing enzyme from the hyperthermophilic archaeon *Thermococcus aggregans*. FEMS Microbiol. Lett. **190**: 223–229
- 88 Benson D. A., Karsch-Mizrachi I., Lipman D. J., Ostell J., Rapp B. A. and Wheeler D. L. (2002) GenBank. Nucleic Acids Res. 30: 17–20
- 89 Schuler G. D., Epstein J. A., Ohkawa H. and Kans J. A. (1996) Entrez: molecular biology database and retrieval system. Methods Enzymol. 266: 141–162
- 90 Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W. et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402
- Janeček Š. (1997) α-Amylase family: molecular biology and evolution. Prog. Biophys. Mol. Biol. 67: 67–97
- 92 Gerischer U. and Durre P. (1990) Cloning, sequencing, and molecular analysis of the acetoacetate decarboxylase gene region from *Clostridium acetobutylicum*. J. Bacteriol. **172**: 6907–6918
- 93 Thompson J. D., Higgins D. G. and Gibson T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment trough sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–4680
- 94 Saitou N. and Nei M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425
- 95 Felsenstein J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution **39**: 783–791
- 96 Page R. D. (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput. Applic. Biosci. 12: 357–358
- 97 Berman H. M., Battistuz T., Bhat T. N., Bluhm W. F., Bourne P. E., Burkhardt K. et al. (2002) The protein data bank. Acta Crystallogr. D58: 899–907
- 98 Watanabe K., Hata Y., Kizaki H., Katsube Y. and Suzuki Y. (1997) The refined crystal structure of *Bacillus cereus* oligo-1,6-glucosidase at 2.0 Å resolution: structural characterization of proline-substitution sites for protein thermostabilization. J. Mol. Biol. **269**: 142–153
- 99 Kamitori S., Kondo S., Okuyama K., Yokota T., Shimura Y., Tonozuka T. et al. (1999) Crystal structure of *Thermoactinonyces vulgaris* R-47 α-amylase II (TVAII) hydrolyzing cyclodextrins and pullulan at 2.6 Å resolution. J. Mol. Biol. 287: 907–921
- 100 Kadziola A., Abe J. I., Svensson B. and Haser R. (1994) Crystal and molecular structure of barley α -amylase. J. Mol. Biol. **239:** 104–121
- 101 Lee M. H., Kim Y. W., Kim T. J., Park C. S., Kim J. W., Moon T. W. et al. (2002) A novel amylolytic enzyme from *Ther-motoga maritima*, resembling cyclodextrinase and α-glucosidase, that liberates glucose from the reducing end of the substrates. Biochem. Biophys. Res. Commun. **295:** 818– 825

- 102 Yebra M. J., Arroyo J., Sanz P. and Prieto J. A. (1997) Characterization of novel neopullulanase from *Bacillus polymyxa*. Appl. Biochem. Biotechnol. 68: 113–120
- 103 Imanaka T. and Kuriki T. (1989) Pattern of action of *Bacillus stearothermophilus* neopullulanase on pullulan. J. Bacteriol. 171: 369–374
- 104 Smith K. A. and Salyers A. A. (1991) Characterization of a neopullulanase and an α-glucosidase from *Bacteroides thetaiotaomicron* 95-1. J. Bacteriol. **173**: 2962–2968
- 105 Brumm P. J., Hebeda R. E. and Teague W. M. (1991) Purification and characterization of the commercialized, cloned *Bacillus megaterium* α -amylase. I. Purification and hydrolytic properties. Starch **43**: 315–319
- 106 Ibuka A., Tonozuka T., Matsuzawa H. and Sakai H. (1998) Conversion of neopullulanase-α-amylase from *Thermoactino-myces vulgaris* R-47 into an amylopullulanse-type enzyme. J. Biochem. **123**: 275–282
- 107 Kim J. S., Cha S. S., Kim H. J., Kim T. J., Ha N. C., Oh S. T. et al. (1999) Crystal structure of a maltogenic amylase provides insights into a catalytic versatility. J. Biol. Chem. 274: 26279–26286

- 108 Skov L. K., Mirza O., Henriksen A., De Montalk G. P., Remaud-Simeon M., Sarcabal P. et al. (2001) Amylosucrase, a glucan-synthesizing enzyme from the α -amylase family. J. Biol. Chem. **276**: 25273–25278
- 109 Park K. H., Kim T. J., Cheong T. K., Kim J. W., Oh B. H. and Svensson B. (2000) Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the α -amylase family. Biochim. Biophys. Acta **1478:** 165–185
- 110 Horváthová V., Janeček Š. and Šturdík E. (2001) Amylolytic enzymes: molecular aspects of their properties. Gen. Physiol. Biophys. 20: 7–32
- 111 Lee H. S., Kim M. S., Cho H. S., Kim J. I., Kim T. J., Choi J. H. et al. (2002) Cyclomaltodextrinase, neopullulanase, and maltogenic amylase are nearly indistinguishable from each other. J. Biol. Chem. 277: 21891–21897
- 112 Suzuki Y., Hatagaki K. and Oda H. (1991) A hyperthermostable pullulanase produced by an extreme thermophile, *Bacillus flavocaldarius* KP 1228, and evidence for the proline theory of increasing protein thermostability. Appl. Microbiol. Biotechnol. **34:** 707–714

To access this journal online: http://www.birkhauser.ch