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Fifty completely sequenced genomes of bacterial, archaeal and eukaryotic or-
ganisms were searched for the genes coding for the four glycolytic enzymes
adopting the structure of a parallel (β/α)8-barrel fold. Since the enzyme
fructose-1,6-bisphosphate aldolase forms two distinct classes, the search was
focused on the three rest (β/α)8-barrels. The genes encoding the triosephos-
phate isomerase, enolase and pyruvate kinase were found in 43 genomes. The
corresponding amino acid sequences were collected and aligned, and the three
respective evolutionary trees were constructed and discussed. The results ob-
tained indicate that: (i) the glycolytic pathway may be in some organisms
incomplete or some other, alternative and/or unique enzymes (reaction steps)
should be taken into account in order to complete the pathway; and (ii) the
three (β/α)8-barrel glycolytic enzymes, as the enzymes belonging to the same
biochemical pathway, are sequentially independent proteins which moreover
may have their own evolutionary history as reflected by their evolutionary
trees.
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lution.

Abbreviations: ENOL, enolase; FALD, fructose-1,6-bisphosphate aldolase;
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Introduction

The glycolysis, as the biochemical pathway, is very
suitable for studying the protein evolution. It is
a central metabolic pathway, virtually ubiquitous,
so that it enables to compare the enzymes isolated
from a wide spectrum of organisms (Fothergill-
Gilmore, 1986). Three-dimensional structures of
all 10 enzymes catalysing the individual steps of
glycolysis have already been determined (Muir-

head & Watson, 1992). The solved structures
together with the fact that the glycolytic enzymes
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belong probably to the most highly conserved en-
zymes known, i.e. evolving slowly (Fothergill-
Gilmore, 1986), make the evolutionarily oriented
studies justified. These efforts are strengthened
by the wealth of sequence data available from
about 50 sequenced complete genomes of all the
three domains of life, Bacteria, Archaea and Eu-
carya (Woese & Fox, 1977; Woese et al., 1990).
For the actual status on sequenced genomes fol-
low, e.g., the link “Genomes” on the ENTREZ
web-site (Schuler et al., 1996) at the URL:
http://www.ncbi.nlm.nih.gov/.
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Four of the ten glycolytic enzymes rank
among the (β/α)8-barrel proteins, i.e. the pro-
teins adopting the structure of a parallel β-sheet
forming the inner barrel surrounded by the out-
side α-helical cylinder (for reviews, see Janeèek
& Bateman, 1996; Pujadas & Palau, 1999).
Since this folding motif is perhaps the most fre-
quently occurring motif in proteins, found approx-
imately in every tenth enzyme whose structure
was solved (Farber & Petsko, 1990; Brändén,
1991; Wolf et al., 1999), as well as it has been
deeply studied in recent years (Gerlt & Bab-

bitt, 2001; Höcker et al., 2001; Wierenga,
2001), our attention was primarily focused on the
(β/α)8-barrel glycolytic enzymes. These enzymes
are: fructose-1,6-bisphosphate aldolase (FALD),
triosephosphate isomerase (TIM), enolase (ENOL)
and pyruvate kinase (PK). However, there are
two classes of FALD which are sequentially and
structurally dissimilar appearing thus to be evolu-
tionary distinct (Sygusch et al., 1987). Although
both forms of the class I and class II FALDs have
been recognised as (β/α)8-barrels (Sygusch et
al., 1987; Blom et al., 1996), the fact, that they
need not be necessarily present in each organism,
does not make it possible to take this (β/α)8-
barrel glycolytic enzyme into the present evolu-
tionary comparison.

This study therefore brings the comparable
evolutionary trees for the three (β/α)8-barrel gly-
colytic enzymes, TIM, ENOL and PK, constructed
for the equivalent sets of bacterial, archaeal and
eukaryotic organisms whose genomes were already
completely sequenced.

Material and methods

All amino acid sequences were retrieved from the com-
plete sequenced genomes from GenBank (Benson et
al., 2000) on the ENTREZ system (Schuler et al.,
1996). The SwissProt sequence database (Bairoch
& Apweiler, 2000) was also used. FALD was not
taken into the analysis due to the existence of two dif-
ferent classes that are not present in each organism si-
multaneously. In order to make the results comparable
focus was on the organisms from which the sequences of
the three rest (β/α)8-barrel glycolytic enzymes (TIM,
ENOL and PK) were available. Thus from the 50 com-
pletely sequenced genomes only 43 contained the se-
quences of TIM, ENOL and PK (Tab. 1).

The sequences were aligned using the program
CLUSTAL W (Thompson et al., 1994) and the
computer-produced alignments were slightly manually
tuned where applicable. The final alignments served for
calculation by the neighbor-joining method (Saitou
& Nei, 1987) of the evolutionary trees, one for each
(β/α)8-barrel enzyme. The Phylip format tree out-
put was applied using the bootstrapping procedure

(Felsenstein, 1985); the number of bootstrap trials
used was 1000. The trees were drawn with the program
TreeView (Page, 1996).

Results and discussion

The search for the (β/α)8-barrel enzymes in-
volved in glycolysis revealed that this impor-
tant metabolic pathway may be in some organ-
isms incomplete since a few of the sequenced

Table 1. The list of completely sequenced genomes con-
taining the genes coding for TIM, ENOL and PK.

Domain of life Organism

Bacteria Bacillus halodurans
Bacillus subtilis
Borrelia burgdorferi
Buchnera sp. APS
Campylobacter jejuni
Caulobacter crescentus
Chlamydia muridarum
Chlamydia trachomatis
Chlamydophila pneumoniae AR39
Chlamydophila pneumoniae CWL029
Chlamydophila pneumoniae J138
Deinococcus radiodurans R1
Escherichia coli K12
Escherichia coli O157
Lactococcus lactis
Mesorhizobium loti
Mycobacterium leprae
Mycobacterium tuberculosis CDC1551
Mycobacterium tuberculosis H37Rv
Mycoplasma genitalium
Mycoplasma pneumoniae
Mycoplasma pulmonis
Neisseria meningitidis A Z2491
Neisseria meningitidis B MC58
Pseudomonas aeruginosa PA01
Staphylococcus aureus Mu50
Staphylococcus aureus N315
Streptococcus pyogenes M1 GAS
Synechocystis sp. PCC6803
Thermotoga maritima
Ureaplasma urealyticum
Vibrio cholerae
Xylella fastidiosa 9a5c

Archaea Methanococcus jannaschii
Pyrococcus abyssi
Pyrococcus horikoshii
Sulfolobus solfataricus
Thermoplasma volcanium

Eucarya Arabidopsis thaliana
Ceanorhabditis elegans
Homo sapiens
Mus musculus
Saccharomyces cerevisiae
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genomes lack the respective genes. Thus the
genomes of seven microorganisms seem to miss
one of the three (β/α)8-barrel enzymes, mostly
PK: Aquifex aeolicus (PK), Archaeoglobus fulgidus
(PK), Halobacterium sp. (ENOL), Helicobacter
pylori (PK), Methanothermobacter thermoautotro-
phicus (PK), Plasmodium falciparum (PK) and
Treponema pallidum (PK). Dandekar et al.
(1999) have proposed that the absence of PK may
indicate the presence of yet another undetected
enzyme which has displaced the “classical” form
of PK. This fact is not too surprising because the
other important metabolic pathway of the citric-
acid cycle was found to be incomplete or absent in
several completely sequenced genomes (Huynen
et al., 1999).

Genomes of 43 different organisms belonging
to all the three domains of life (Bacteria, Archaea
and Eucarya) contain the genes (or ORFs cod-
ing for the putative proteins) of the three (β/α)8-
barrel enzymes, TIM, ENOL and PK (as of June
2001). Five organisms belong to the domain Ar-
chaea, five further ones to Eucarya and the rest
33 ones to Bacteria (Tab. 1). The fact that the or-
ganisms listed in Table 1 possess in their genomes
the genes encoding the TIM, ENOL and PK does
not necessarily mean that these organisms contain
the full set of glycolytic enzymes, i.e. they are able
to perform the complete glycolysis. The compar-
ative study focused on all the enzymes from the
complete glycolytic pathway is under way and the
results will be published elsewhere.

The amino acid sequences of all 43 TIMs,
ENOLs and PKs were aligned (the alignments are
not shown) in order to calculate the evolutionary
trees (Fig. 1) based on the alignments. Table 2 in-
dicates simplified trends of evolutionary related-
ness among (β/α)8-barrel glycolytic enzymes de-
rived from bacterial (Bacillus subtilis), archaeal
(Methanococcus jannaschii) and eukaryotic (Sac-
charomyces cerevisiae) origins. In general, it seems
that the degree of conservation decreases in the
order ENOLs (average sequence identity 55.8%),
PKs (36.9%) and TIMs (29.3%). The substantially
higher sequence identity between the Bacillus and
yeast TIMs (41.3% in comparison to values lower
than 25%) is of interest (Tab. 2).

The evolutionary relationships among 43 or-
ganisms in the frame of all the three (β/α)8-
barrel glycolytic enzymes can be inferred from the
trees shown individually for TIM, ENOL and PK
(Fig. 1). First of all, it seems evident that each
glycolytic enzyme may have its own evolutionary
history since the relatedness among the individual
living systems is different for each enzyme. The

Table 2. The values in % of degrees of sequence iden-
tity and similarity (in parenthesis) between the pairs of
triosephosphate isomerases, enolases and pyruvate ki-
nases representing the bacterial, archaeal and eukary-
otic domain of life.

Triosephosphate B. subtilis M. jannaschii
isomerase

M. jannaschii 24.2 (40.6)
S. cerevisiae 41.3 (59.5) 22.4 (39.3)

Enolase B. subtilis M. jannaschii

M. jannaschii 57.5 (72.6)
S. cerevisiae 52.1 (69.5) 57.7 (71.4)

Pyruvate kinase B. subtilis M. jannaschii

M. jannaschii 35.6 (57.5)
S. cerevisiae 41.0 (57.2) 34.0 (52.4)

clustering does not reflect the known taxonomy de-
duced from the comparison of small-subunit rRNA
sequences (Pace, 1997). The eukaryotes (human,
mouse, nematode, plant and yeast) and archaeons
(two Pyrococcus, Methanococcus, Sulfolobus and
Thermoplasma) are the best conserved groups in
all the three trees (Fig. 1), however, they are not
comparably related to each other. Remarkably the
two groups are on adjacent branches in the ENOL
tree (Fig. 1). All the archaeons used in this study
(Tab. 1) belong to extremophilic microorganisms
producing mainly thermostable proteins and en-
zymes (Lévêque et al., 2000). The extremely
thermophilic bacterium Thermotoga maritima is
found in one larger cluster with the archaeons in
the ENOL and PK trees. In the TIM tree (Fig. 1)
Thermotoga is placed close to chlamydiae. The
other bacterium clustered next to archaebacteria
in all the evolutionary trees is Campylobacter je-
juni, the fact that is especially evident in the TIM
and ENOL trees. The rest of bacteria, in fact,
respect the well-established bacterial taxonomic
groups, however, the observed evolutionary rela-
tionships are not uniformly conserved for the three
(β/α)8-barrel glycolytic enzymes. This observa-
tion can be supported by the three-dimensional
structures of TIM, ENOL and PK that, although
being characterised by a common (β/α)8-barrel
domain, have been classified into different struc-
tural groups (Farber & Petsko, 1990).

In conclusion, our results are in agreement
with the remarks by Copley & Bork (2000)
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Triosephosphate isomerase

Evolutionary trees of the three (β/α)8-barrel glycolytic

Enolase

enzymes. The trees are based on the alignment of

Pyruvate kinase

entire amino acid sequences of
triosephosphate isomerases, enolases and pyruvate kinases present if 43 completely sequenced genomes. Colour code: bacteria – red, archaea – green, and
eukarya – blue.

286



who have found no strong evidence on evolution
of biochemical pathways in the terms that en-
zymes within a pathway are likely to be homol-
ogous. The TIM, ENOL and PK as the enzymes
and the glycolysis as the pathway seem to be
very good examples of such an evolutionary be-
haviour (Fig. 1). With regard to the conserva-
tive glycine and proline residues flanking in loops
the strand β2 of many (β/α)8-barrel enzymes,
the three glycolytic enzymes were also revealed to
be structurally different (Janeèek, 1996): ENOL
contains both Gly and Pro residues, PK has the
Gly whereas TIM possesses the Pro. Finally, con-
cerning the apparent incompleteness of glycoly-
sis in several genomes, it should be pointed out
that it is not the feature characteristic of glycol-
ysis only. Beside the incompleteness of the citric-
acid cycle mentioned above (Huynen et al., 1999)
some archaeons were found to miss any glyco-
side hydrolases indicating their life with no sugars
(Coutinho & Henrissat, 1999). Thus where en-
zymes of genomes expected in the “classical” bio-
chemical steps are missing, some gene and func-
tional modifications and alternative enzymes have
to be taken into account (Cordwell, 1999). To
shed more light on this phenomenon, the evolu-
tionary relationships of the three (β/α)8-barrel
enzymes of glycolysis were described for 43 com-
pletely sequenced genomes and the analysis of the
entire glycolytic pathway is under way.
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